Home » Electric Vehicle Batteries

Category Archives: Electric Vehicle Batteries

Electrovaya’s New Technology to Jump-start Lithium-Ion Battery Industry

by John Brian Shannon

Electrovaya and it’s new German acquisition own the patent on a new technology that will make all Lithium-Ion batteries better and safer by increasing the ability of Li-Ion batteries to withstand the higher temperatures of today’s more powerful and energy dense batteries.

Thermal stability is everything when it comes to creating batteries that are more powerful and more densely packed — as in the large battery packs found in electric vehicles.

Electrovaya’s fully embedded ceramic material withstands significantly more heat than conventional materials used to electrically isolate battery components and are lighter, safer and cheaper than present-day industry standards.

The Lithium-Ion battery business — already a global industry — will be a $70 billion business within 10-years, and it looks like Electrovaya intends to dramatically improve the performance and safety of all Li-Ion batteries, as excess heat and how to contain it, has always been the nemesis of the battery industry. Not to mention incrementally lowering the weight of each Li-Ion cell — an important factor in large batteries such as those found in electric vehicles.

Note that the TESLA P100 battery (which is actually a 100kW battery pack consisting of 8,256 individual rechargeable Lithium-Ion cells in the Panasonic 18650 format, for a total output of 102.4kW) weighs well over 1,200 pounds. A weight savings of 10% (for example) adds up to lower total battery pack weight and longer range for such vehicles.

Watch the CBC video by Reg Sherren on the little company that promises to be a game-changer in the Lithium-Ion (rechargeable) battery industry.

Electrovaya charging ahead with clean energy

“The Ontario company is poised to be a global player in the growing lithium-ion battery market, and it already has its sights on Europe’s industrial powerhouse.” — CBC

The Home Battery System. Are we ready for this?

by John Brian Shannon John Brian Shannon

Ever since lower priced solar panels have hit the market, it has become obvious that home battery systems are the next logical step for our modern, but still evolving, energy grid.

Installing solar panels on your rooftop has never been easier, as panel prices have fallen in price by 80% over the past two years and installation rebate programs are generous in many jurisdictions. But getting all that free daytime energy from the Sun won’t do you much good unless you can store it for later use.

Having a home battery system allows you to store the energy that your solar panels collect every day.

Without a home battery system, solar power can make economic sense in many locations — but solar with a battery system will rock your world! OK, maybe not rock your world, but it makes a lot of sense if the battery system can be had for a reasonable price.

Without a home battery, you can still sell your excess solar generated electricity to the grid if your utility has a net-metering programme. But much of your profit is eaten up when you buy back some of that electricity after the Sun sets, at a higher price. Yes, every day of the year.

For homeowners, having battery storage means you could save a lot of money over ten or twenty years if a battery system is cost-effective to begin with — and a battery system IS a wonderful thing to have during utility company power outages.

Home Battery Systems can make sense, even without solar panels

If you live in a jurisdiction where you can buy electricity from your utility company at a very low rate during certain hours of the day or night and store that energy with your home battery system for later use, that can work for you — regardless if you have solar panels or not. Peak rates can be $0.38 per kWh in some parts of North America (or higher), while off-peak rates can be $0.08 per kWh (or lower) making the peak rate about five times more expensive in this example, than the off-peak rate.

Prognosticating ten or twenty years out, who’s to say what electricity rates may be? There always seems to be a reason to hike the rates.

JBS News Renewable Energy. Ontario, Canada rates presently run between $0.07 Off-peak, $0.11 Mid-peak and $0.13 On-peak per kWh. All rates are approximate and subject to change. This chart for illustrative purposes only. Image credit: Ontario hydro one.
JBS News Renewable Energy. Current electricity rates in Ontario, Canada, run between $0.07 Off-peak, $0.11 Mid-peak and $0.13 On-peak, per kWh. All rates are approximate and subject to change. This chart for illustrative purposes only. Image credit: Ontario hydro one.

Your home or business can run on the power from your home battery system during high electricity rate periods, and past midnight, your battery system can be scheduled to automatically connect to the grid and recharge itself at the lowest rate.

At present, we are about 10 years away from economically priced home battery systems for the majority of consumers. That’s not to say that you can’t go out and buy one of these systems today, because you can. It’s just that they cost more than the average consumer is willing to spend at this point.

Apart from collecting solar energy for you all day or saving money due to rate fluctuations (or both), home battery systems can protect you from utility company power interruptions, especially for those in rural areas or other areas where power outages are common.

However, for homeowners in rural areas and subject to frequent power service interruptions, having a battery backup can make sense.

Take the case of a dairy farmer who suddenly has no electricity at 7:00am on a cold winter morning; How is he going to milk 2500 cows in one hour, and in the dark, without backup power? Of course, the old standby has always been an expensive-to-fuel diesel generator and the noxious fumes that go along with it.

Or we can look at a veterinary clinic, or other examples where uninterrupted electrical power is important.

With battery backup, electrical power returns within one minute and the vet can proceed with the days operations on her four-footed patients and the farmer can milk his cows without missing a beat.

Emergency service providers, schools, and other important government buildings and businesses could also benefit from such in-situ battery systems.

It’s interesting to note that Tesla is working with Solar City to offer home batteries, using their Electric Vehicle (EV) battery technology. A fascinating development and one that holds tremendous promise.

Recycled Electric Vehicle batteries still have 70% life, after removal

GM wants to use old Chevy Volt batteries and give them a second life as an home battery. GM says that even after ten years of powering your daily commute, an EV battery still has at least 70% of the power it had when it was assembled.

In many cases, when an EV battery has reached the end of its life in an automotive application, only 30 percent or less of its life has been used.

This leaves a tremendous amount of life that can be applied to other applications like powering a structure before the battery is recycled. — Pablo Valencia, GM senior manager of battery lifecycle management

Innovations like new and recycled EV batteries will pave the way forward to a viable and affordable distributed energy future and can be a way to get very efficient second use from recycled EV batteries.

EV batteries store a huge amount of power, enough to power a home for two or three days in the case of a service interruption — and in the case of storing energy for everyday use during peak rate periods, would be well within EV battery capabilities.

Stay tuned, because this story is just beginning.

________________________________

________________________________

Planetary Energy Graphic

Click here to enlarge the image

________________________________

U.S. Energy Subsidies

Click here to enlarge the image

________________________________

U.S. Jobs by Energy Type

Click here to enlarge the image

________________________________

Energy Water Useage

Click here to enlarge the image

________________________________

U.S. Energy Rates by State

Click here to enlarge the image and see the data for each state in the U.S.A.

Our energy comes from many sources, including coal, natural gas, nuclear and renewables.

As nonrenewable sources such as coal diminish due to market forces and consumer preference, the need for renewable energy sources grows.

Some U.S. states satisfy their growing renewable energy needs with wind, solar and hydropower.

Wind: Texas has the capacity to generate 18,500 megawatts hours of electricity through wind, and expects to add another 5,000 megawatts of wind generation capacity from facilities under construction.

Solar: California’s solar farms and small-scale solar power systems have 14,000 megawatts of solar power generating capacity.

Hydroelectric: Washington state hydroelectric power produces two-thirds of its net electricity.

Information courtesy of ChooseEnergy.com

________________________________

C40 Cities Initiative

________________________________

A Living Wage

Click here to enlarge the image

________________________________

JBS News on Twitter

________________________________