Fossil Fuels and Utilities At Risk In New Report — Energy Darwinism At Work

by Giles Parkinson

.

Originally published on RenewEconomy

A major new report from investment banking giant Citi has highlighted the dramatic changes sweeping the world’s energy industry, and is being used as a clarion call to review the estimated $37 trillion that will be invested in energy infrastructure and projects over the coming two decades.

In a study titled “Energy Darwinism – the evolution of the energy industry“ – Citi says the global energy mix is shifting more rapidly than is widely appreciated, and this has major implications for generators, utilities, and consumers, and for exporters of fossil fuels such as Australia.

“Consumers face economically viable choices and alternatives in the coming years which were not foreseen 5 years ago,” the analysts write – pointing mostly to the “alarming” falls in the cost of solar.

It says the pace of change in the last five years has been dramatic and will likely accelerate, not slow. These changes will flow through to suppliers. Conventional fuels and technologies are likely to be substituted, or suffer reduced demand in the best case scenario.

(It should be noted here that the six analysts involved are the managing directors of research in Citi’s mining, oil and gas, utilities, commodities and alternative energy sectors, so they are not just a band of beatific beatniks).

Citi says fossil fuels further up the cost curve are most at risk, and new projects built now will face competition with new technologies within the first quarter of their anticipated 25-year life. “These project entail significantly more risk than is widely recognised,” the analysts write.

“There will always be more subjective choice factors involved such as fuel diversity and energy independence that may offset cold, hard economics, but investors, companies and governments must consider the sea change that we believe is only just beginning. “

It says utilities are most at risk because the “very nature” of their business is likely to change. Utilities in their current form could lose half their addressable market to energy efficiency, solar and storage, and other distributed generation.

“Renewables and decentralised energy are impacting not only how utilities can earn money, but also what they do to earn this money,” Citi says. “There are opportunities for new avenues for investment and growth in terms of smart grid, storage, and downstream services. “The question is whether utilities grasp that opportunity and evolve themselves.”

Perhaps the key graph in the report is this one below. It doesn’t mean much at first glance, but Citi says it is critical for understanding the factors at play.

.citi-darwin

In the first quartile it notes that gas (the light grey line) dominates the first quartile of the integrated cost curve, largely thanks to the advent of shale.  So that is probably true of the US, but not many other places (in Australia, gas is really expensive, or about to be). The key is what happens in the other quartiles.

In the final quartile, it notes that solar is already intersecting with gas, which is why utilities in the US are dumping plans for peaking gas stations in favour of solar (red line). And this also means that solar steal the most valuable part of the electricity generation curve because it produces during the day when prices are highest.

This is already impacting Germany, where gas is expensive and gas-fired generators are going out of business, and it might have cited Australia too, where returns for incumbent fossil fuel generators are falling dramatically and so it their running time. Wind farms such as Collgar in WA are running at higher capacity factors than black coal generators in NSW.

Citi notes that wind (orange line) is already overshadowing coal (black) in the second quartile. But here’s the conclusion that will stun those locked into a conventional view of generation: Citi says that while wind’s intermittency is an issue, with more widespread national adoption it begins to exhibit more baseload characteristics (i.e. it runs more continuously on an aggregated basis). “Hence it becomes a viable option, without the risk of low utilisation rates in developed markets, commodity price risk or associated cost of carbon risks.”

Citi notes that solar is exhibiting “alarming” (for whom!?!?!?)  learning rates of around 30 per cent (that is for every doubling of installed capacity). Wind is evolving at a slower ‘mechanical’ learning rate of 7.4 per cent, and gas is evolving due to the emergence of fracking and the gradual development and improvement of new extraction technologies.

But Citi says that coal is using largely unchanged practices and shows nothing like the same pace of evolution as the other electricity generation fuels or technologies. It notes nuclear has seen its costs rise in developed markets since the 1970’s, largely due to increased safety requirements and smaller build-out.

As Citi notes: “Thus is not a ‘tomorrow’ story. We are already seeing utilities altering investment plans, even in the shale-driven U.S., with examples of utilities switching plans for peak-shaving gas plants, and installing solar farms in their stead,” it says.

“The same is true for other fuels, for example the reluctance on the part of utilities to build new nuclear in the UK, or the avoidance of coal in some markets due to uncertainty over pricing, likely utilisation rates and or pollution.

“Even in China, we believe that coal demand is likely to peak this decade as its generation mix starts to shift,” it says. It notes India’s coal demand will grow much slow than expected, and nuclear – and the capital costs involved – make it unsuitable for markets with such uncertainty.

On solar, Citi says the price fall of solar panels has exceeded all expectations, resulting in cost parity being achieved in certain areas much more quickly. “The key point about the future is that these fast ‘learning rates’ are likely to continue, meaning that the technology just keeps getting cheaper. At the same time, the alternatives of conventional fossil fuels are likely to gradually become more expensive.”

On wind, it says technology is evolving more slowly than solar but it has the advantages of offering more ‘base-load’-like characteristics in running more of the time, and perhaps most importantly is lower cost than solar, allowing the technology to compete against conventional generation at lower wholesale prices.

It says storage is still a nascent industry, but so was solar just 5 to 6 years ago. “The increasing levels of investment and the emergence of subsidy schemes which drive volumes could lead to similarly dramatic reductions in cost as those seen in solar, which would then drive the virtuous circle of improving economics and volume adoption,” it says.

And how fast can evolution take place? Citi provides this graph below to illustrate the point.

.citi-waterfall

Citi says the history of the energy industry tells us that change is never gradual. New technologies are embraced at the expense of incumbents. Today, as conventional fuels become gradually more scarce and expensive and as new technologies improve, the long term transformation becomes ever more inevitable. It says it would be naive to think otherwise.

“If we look at the situation facing European utilities, the future looks particularly challenging, given a potential halving of their addressable market, an ageing fleet, and deeper questions about what a utility will look like in 5, 10 or 20 years’ time,” it writes.

“In transportation, the emergence of electric vehicles, and more importantly the rise of oil to gas switching show that evolution is not restricted to the power generation market.”

“Given the long term nature of upstream fossil fuel and power generation projects, this substitutional process and the relative pace of evolution is vitally important to understand.

“The sums of capital being invested are vast; the International Energy Agency (IEA) forecast that $37 trillion will be invested in primary energy between 2012 and 2035, with $10 trillion of that in power generation alone. Clearly the value at risk from plant or the fuels that supply them becoming uneconomic in certain regions, both in terms of upstream assets and power generation, is enormous.

“Quite simply the sums of money at stake in terms of investment in energy over the coming decades are staggering, and getting a choice of fuel or technology ‘wrong’ could have dramatic consequences for both countries and companies, be they upstream oil & gas companies, utilities, industrial consumers, renewable developers of power generation equipment providers.”

So, could someone please ensure that this report is stuck under the nose of Australia’s energy ministers, be they federal or state, and all the middle aged engineers and fossil-fuel careerists that advise them? And mark it Must Read.

(Author’s disclaimer: I am middle aged).

 

Repost.Us - Republish This Article

This article, Fossil Fuels and Utilities At Risk In New Report — Energy Darwinism At Work, is syndicated from Clean Technica and is posted here with permission.

 

About the Author

Giles Parkinson is the founding editor of RenewEconomy.com.au, an Australian-based website that provides news and analysis on cleantech, carbon, and climate issues. Giles is based in Sydney and is watching the (slow, but quickening) transformation of Australia’s energy grid with great interest.

Related Posts

Screen-Shot-2013-09-25-at-9.46.29-PM

$5.7 Trillion Worth of Renewables With No Added Grid Costs

citigroup energy study

Shale Gas Won’t Kill Solar & Wind, Renewable Growth Unstoppable (Citigroup Study)

Jerry_Brown_First_windpower_in_US

California’s 2nd Chance – Giant 3 GW Wind Farm Gets $1.2 Billion

A Match made in Heaven: Solar power and Water desalination

by John Brian Shannon

The nations of the Persian Gulf and Arabian Gulf are blessed to have access to unfathomable amounts of sunlight and salt water. With growing populations and scarce water reserves, governments, public or privately-held power companies and water utilities can capitalize on these national assets — when the economics work.

Even when the economics don’t work, human beings still need water! Growing cities need water for domestic use and industry needs water to produce the goods that we buy, or that they export.

The question for Oman is; How much of Oman’s oil and gas is burning up at desal plants — instead of being exported to add to Oman’s GDP?

In previous decades, the power-hungry desalination plants widely-used throughout the Middle East were powered by electricity created from burning vast amounts of fossil fuel. The economics barely worked when the oil prices were low – but now, with oil once more approaching $100. per barrel, they are costing a king’s ransom to operate. Even oil-rich kingdoms are feeling the pinch nowadays.

A cogent case can be made for adopting alternative energy to power existing and future desalination plants – thereby allowing that oil and gas to be sold at export instead of being burned up. Why burn your money?

At $96.80/barrel for oil (April 2/13) and the natural gas price passing $4.08/MMBtu (April 2/13) the annual fuel cost to produce electricity with fossil fuel is unimaginably high. Really, you don’t want to know.

Fossil fuel exports power the economies of rapidly growing Middle East and North Africa (MENA) nations. Each barrel of oil burned for local desal operations, is one less barrel contributing to the national GDP. A similar situation is at play with regards to natural gas in Oman and the other GCC nations.

Modern solar power plants, such as Masdar’s Shams 1 solar power plant can produce 100 megawatts of clean power for 30-years or more, powered only by sunshine. These modern electrical energy power plants are powerful enough to run; (1) a desalination plant, with enough energy surplus to run (2) a nearby town, or (3) a rural areaor, perhaps all three!

There are two basic types of solar power;

  • Photovoltaic solar, properly called ‘PV-solar’ or ‘PV-solar modules’. The solar panels only produce power when the Sun is shining. Which is fine, because the highest electrical demand occurs during daylight hours.
  • Thermal solar, known as ‘Concentrated Solar Power’ or ‘CSP’ produce power 24 hours a day, by storing excess daytime heat in liquids such as molten salt or oil, to run a steam turbine/electricity generator.

PV-solar (panels) have increased efficiency from their 1980’s-era, 11% efficiency rating — to today’s +33% efficiency rating units. Panels with much higher efficiency ratings (perhaps as high as 100%) will hit the market within 20-years. And through all this, PV-solar panel prices have been falling dramatically, to the point that PV-solar utility-scale power plants are now price-competitive with other kinds of power – assuming similar subsidy levels are in place.

Solar Bonus

As PV-efficiency continues to increase through the next few years, just as it has been doing thus far, PV-solar ‘scaling up’ will be very easy. For example, solar panels are size-standardized, so simply unbolting the ‘old’ 11% efficiency panels and replacing them with the ‘new’ 22% efficiency panels, effectively doubles the power output of the solar power plant — practically overnight! (e.g.; 100 MW to 200 MW)

A few years later, when PV-efficiency increases, those (by then) ‘old’ 22% panels can be replaced with ‘new’ 45% efficiency panels – thereby doubling (again!) the total output of the solar power plant. The ‘old’ solar panels will still work fine, and they can be sold to developing nations, or traded-in against the cost of the new panels, just the same way you would trade your old car for a new one.

In fact, PV-solar power now costs less than comparable coal-fired power — and that’s not factoring in the costly ‘externalities’ of coal-fired electrical power generation, which range from huge water usage by coal-fired power plants, to toxic airborne emissions, to adverse health effects on citizens – which prematurely killed 1.2 million people in 2007-2010, in China alone!

solar-coal-power_thumb3.png
PV-solar power now costs less than comparable coal-fired power

CSP solar technology has advanced remarkably and several different designs have proven themselves viable in Spain, the United States and the UAE, although CSP costs are still high when compared to PV-solar and conventional power. This is changing as CSP production ramps up around the world. The one great advantage of CSP solar, is that these power plants produce power 24-hours per day, 365-days per year – and, no harmful emissions.

“Holding nearly half of the world’s renewable energy potential, the Middle East and North Africa are poised for unprecedented growth in renewable energy.” — Masdar

jan_2013_aerial_francois_site_photoshooting_0208_bb__cover
Masdar’s Shams 1 Concentrated Solar Power (CSP) 100 megawatt power plant near Abu Dhabi. image courtesy: Masdar

“The inauguration of Shams 1 is a breakthrough for renewable energy development in the Middle East. With the demand for energy rising exponentially, the region is undergoing a major transformation in how it generates electricity. In fact, the Middle East is poised for major investments in renewables, and Shams 1 proves the economic and environmental advantage of deploying large-scale solar projects.” — His Excellency Dr. Sultan Ahmed Al Jaber, CEO of Masdar. (Read Masdar Shams 1 Press Release here)

It’s safe to say that MENA nations should be planning a long-term switch to solar energy, starting with PV-solar now, and CSP solar starting within the next ten years.

Financing these new, pollution-free power plants could be assisted by GCC government investment (sovereign wealth funds) financed through increased oil and gas exports – as oil and gas will be ‘freed-up’ for sale to international buyers.

It must be said that in areas of the country that make the switch from fossil fuel to solar, the cost of externalities will fall and residents will notice better health and enhanced ‘quality of life’ due to lower airborne emission levels and governments will notice lower health care costs. Not to mention plenty of clean, low-cost water for citizens and industry.

JOHN BRIAN SHANNON

To follow John Brian Shannon on social media – place a check-mark beside your choice of Facebook, Twitter or LinkedIn: FullyFollowMe/johnbrianshannon

Why are Environmentalists excited about the Natural Gas boom?

Why are Environmentalists excited about the Natural Gas boom? | 18/03/13
by John Brian Shannon John Brian Shannon

Mirror, mirror, on the wall, which is the cleanest fossil fuel of all?

You guessed it! Natural gas is the cleanest fossil fuel – and by significant margins as data from the Environmental Protection Agency illustrates in the chart below.

Fossil Fuel Emission Levels in pounds per billion Btu of energy input. Source: EPA Natural Gas Issues and Trends 1998
Fossil Fuel Emission Levels in pounds per billion Btu of energy input. Source: EPA Natural Gas Issues and Trends 1998

Natural gas, as the cleanest of the fossil fuels, can be used in many ways to help reduce the emission of pollutants into the atmosphere.

Burning natural gas in the place of other fossil fuels emits fewer harmful pollutants, and an increased reliance on natural gas can potentially reduce the emissions of many of the most harmful pollutants. — naturalgas.org

After investigating the externalities associated with conventional sources of energy and cognizant of their commitments towards clean air, many nations have begun to embrace natural gas as a stepping stone towards a cleaner energy future.

In the U.S.A., as far back as 2003 when coal supplied more than 50% of America’s electrical power, coal-fired plants have been retired more quickly than new ones have come online. By 2012, coal supplied only 38% of U.S. electricity.

Nine gigawatts of U.S. coal-fired power generation was shut-down in 2012 alone, and replaced by an almost equal amount of natural gas power generation. Emission levels from those comparably-sized replacement natural gas power plants are less than half of those retired coal-fired plants!

Many more U.S. coal-fired power plants are scheduled for complete shutdown, or conversion to natural gas over the next few years totalling 35 GigaWatts (GW) according to the experts.

Chart courtesy of the U.S. Energy Information Administration — shows carbon emissions dropping as a result of switching from coal to natural gas,  2005-2012.

U.S. Carbon Emissions by Sector. Source: U.S. Energy Information Administration
U.S. Carbon Emissions by Sector. Source: U.S. Energy Information Administration

Carbon emissions of all end-use Sectors have decreased since 2005 in the United States.

The largest reductions appear to be due to the Electric Power and Transportation sector’s emissions, followed by the Industrial, Residential and Commercial sectors.

[Of all sectors] “the largest reduction to carbon emissions is due to coal-to-natural gas ‘fuels switching’ and construction of higher efficiency power plants. 

Expansion of renewable power, overwhelmingly due to expanded wind power, has been the second largest factor to reduced Power Sector carbon emissions.” – theenergycollective.com

Many expert studies show CO2 emissions dropping as a result of the combined effects of many countries switching from coal to natural gas and/or renewables, 1990-2100.

Chart depicts probable CO2 levels, depending on the choices we make. Image courtesy of Royal Dutch Shell 'New Lens Scenarios'
Chart depicts probable CO2 levels, depending on the energy choices we make. Image courtesy of Royal Dutch Shell ‘New Lens Scenarios’

The change-up to renewable energy will vary by country as OECD nations continue to take the lead in renewable energy between now and 2100. Even so, total worldwide emissions will drop dramatically and the switch from coal to natural gas is one big step towards a cleaner environment.

Related Articles:

Energy & Climate: The regulatory climate is changing too!

by John Brian Shannon

For several decades, U.S. environmental regulators have been the tall, silent type.

These highly-educated people worked for the government, but alongside industry, to craft energy regulations reflecting the ecological notions of their particular era. For most of the 20th century politicians favoured regulations which worked to promote the rapid growth of the economy and to advance the use of energy – particularly fossil-fuel energy.

But now, a new generation of regulators are actively contributing to the debate and they are doing so in significant ways. So much has changed and with little media coverage considering the scope of the changes which are now becoming apparent.

Such are the recent regulatory changes in the U.S.A. that people are now openly wondering if another coal-fired powerplant will ever be built in the United States!

Coal, which produced a majority of America’s electrical energy in 1997,  has since dropped to 36% of total electrical energy production.

The average share of electricity generated from coal in the US has dropped from 52.8% in 1997 to 45.0% in 2009.[1] In the first quarter of 2012, the use of coal for electricity generation has declined substantially more, declining 21% from 2011 levels. According to the U.S. Energy Information Administration, 27 gigawatts of capacity from coal-fired generators [are] to be retired from 175 coal-fired power plants between 2012 and 2016.[8] Coal’s share of electricity generation dropped to just over 36%. – Wikipedia

The explanation for this sea-change is both simple and complicated. EPA regulators attempted to enforce the new for 2011 Cross-State Air Pollution Rule regulations (read other important CSAPR information here) due to go into effect on 7/7/11, but that act was struck down in appeals court on 21/8/12 for contravening another set of regulations called The Clean Air Act. Happily, another act (but with lower standards) called the Clean Air Interstate Rule automatically resumed as the prevailing regulatory framework until the CSAPR could be re-written so as not to contravene The Clean Air Act.

In the meantime, EPA bureaucrats set to work on changing the regulations for natural gas extraction, including fracking, which helped to make electricity produced by natural gas much cheaper than electricity produced by coal — and as a result, coal-fired plants are closing down far faster than if the CSAPR had been enacted and not struck down. (Moral: Never argue with the bureaucrats).

Yet more changes lay ahead due to upcoming proposed regulatory changes. A good example of this is Tina Casey’s post “Texas Wind Power Up, Nukes Down” which describes how the nuclear powerplant operator Exelon is shifting away from nuclear to wind energy.

In an interview with the Chicago Tribune last week, the CEO of energy giant Exelon, Christopher Crane predicted that the influx of low cost wind power would lead the company to start shuttering its nuclear plants.

Though wind and other renewables only account for about three percent of the company’s capacity now, that could change pretty fast.

Exelon’s first commercial wind farm only started operating in January 2012, and the company already has 44 wind projects operating in 10 different states. Tina Casey (Cleantechnica.com)

Coal is now being undercut by lower priced natural gas-fired electricity — and nuclear power is being undercut by lower priced wind-powered electricity, causing a historic shift in America’s energy makeup. We are just at the beginning of that road.

What happens if regulators decide to drop the huge subsidies the government pays to both the coal industry and the nuclear industry?

Even if regulators decided to bring subsidy levels for sustainable energy up to the same levels that coal and nuclear now enjoy – the changes we have seen thus far will seem microscopic.

fossil-fuel-subsidies

In the U.S.A., Oil and Gas receives 13 times more in historical subsidies than clean energy.

Over the first 15 years of these energy sources’ subsidies, oil and gas got 5 times what renewables got (in 2010 dollars) and nuclear energy got 10 times as much.

“Nuclear spent an average of about $3.3 billion a year, oil and gas about $1.8 billion, and renewable energy just under half a billion,” DBL Investors Managing Partner Nancy Pfund and Ben Healey recently wrote in “What would Jefferson do?” – Cleantechnica

energy-subsidies-percentages

The energy regulatory climate is changing in the U.S.A., and we have only seen the beginning of these changes. By 2020, America’s energy regulations will have changed significantly to reflect what a large percentage of voters want. Clean energy, delivered on a (subsidy) level playing field.

us_fuel_subsidies

Related Articles:

JOHN BRIAN SHANNON

To follow John Brian Shannon on social media – place a check-mark beside your choice of Facebook, Twitter or LinkedIn: FullyFollowMe/johnbrianshannon