Creating Jobs via Renewable Energy Adoption

Creating Jobs via Renewable Energy Adoption | 07/02/15
by John Brian Shannon John Brian Shannon

Adding new jobs to the economy is always a good thing

In good times or bad, adding more jobs to the economy always equates to higher GDP, lower debt-to-GDP levels, lower unemployment insurance expenditures and higher revenues for governments from income tax and sales tax.

There are no examples where adding net jobs to an economy has resulted in a net loss to the economy

It’s positive for individuals too. Higher employment levels generally lead to higher incomes, small and large businesses notice increased revenue and there is always the chance that companies may begin to expand their facilities and hire more staff to handle increased sales.

Which is why the case to add more renewable energy is so compelling

IRENA Renewable Energy jobs infographic - Global
Global jobs created by the Renewable Energy industry. Image courtesy of IRENA.

Over decades of time, mature industries have figured out ways to increase output with fewer employees.

In the Top 10 on the mature industry list, must certainly be hydro-electric power plants, followed by nuclear power plants and gas-fired power plants. There we have astronomical installation costs and employment numbers — but once construction of the power plant is completed only very low staffing levels remain to operate the power plant.

Which is very unlike the case with renewable energy. Why? Because once a multi-billion dollar hydro-electric dam is built, it’s built. You don’t need to build thousands of them per day.

It’s the same with multi-billion dollar nuclear power plants — all you need after the construction phase ends are a small number of highly trained people to monitor the various systems. And some security people. That’s it.

With solar panels, a factory must produce 1000 per day (or more, in the case of larger factories) every weekday. Suitable markets must be found, factories must be built/leased, production floors must be built, materials sourced, and the panels themselves must be designed and engineered, assembled, packed, shipped and accounted for. Accountants do what they must do, marketing people manage a steady train of media events, trade shows and advertising programs, and on and on it goes — and all of it is a part of the solar industry. That activity creates work for thousands of people, every workday of the year. (And that short description doesn’t begin to cover it)

Then there are the solar panel installers, the sales teams/estimators, and the companies that build the inverter systems, which is a whole other value chain.

The wind power industry can also make high employment/lower power plant cost claims — although wind turbines average about $1 million dollars each — as opposed to solar panels which mostly range from $10 each to $400 each, depending on their size and composition.

Renewable energy is hugely labour-intensive and many thousands of permanent jobs are created — quite the opposite of conventional power generation

It is worth commenting that 2014 renewable energy employment numbers (once they become available) will show a significant improvement over 2013 numbers.

The entire industry is surging forward unequally, but renewable energy growth in some nations is trending upwards like the Millennium Falcon trends upwards.

Below is a breakdown graphic showing the labour intensity of the various types of renewable energy.

Globally, 6.5 million jobs were created in 2013 from renewable energy.
Globally, 6.5 million jobs were created in 2013 from renewable energy. Image courtesy of IRENA.

We can also look at a breakdown graphic of jobs per MW of electricity produced where we see that coal, nuclear, and oil & gas require very few humans per MW.

Potential jobs by MegaWatt (MW) by energy type. Image courtesy of IRENA.
Potential jobs by MegaWatt (MW) by energy type. Image courtesy of IRENA.

There’s no doubt that global energy demand is growing, not only in the developed world, but in the developing world as well.

Each kind of energy (non-renewable and renewable energy) has it’s own pros and cons.

One of them, is that non-renewable energy requires far fewer humans over the lifetime of the power plant.

Renewable energy on the other hand, is a rapidly-growing manufacturing, installation, and marketing industry that requires evermore blue collar and white collar employees.

And now that solar power, wind power, and biomass power have reached — or are within months of matching (per kWh) price parity with non-renewable power plants — the question becomes;

Do we want to employ 1.3 persons full-time per MW, or do we want to employ up to 24 people full-time per MW?

For comparison purposes, the typical coal, gas, or nuclear power plant can supply 1000 MW (or 1 GigaWatt) of electrical generation capacity, while the average wind turbine can supply 1 MW each.

The average 1 MW wind turbine costs about $1 million apiece, so to get 1 GW of electrical generation capacity, you need to install 1000 of them (1000 x $1 million each = $1 billion total) and the installation and connection to the grid of that many turbines might take up to 24 months.

Each 1 GW installation of coal, gas, or nuclear power, costs well over $1 billion and can take up to 15 years to construction completion.

For example, the 2.4 GW nuclear power plant under construction in Vogtle, Georgia was originally planned to cost $14 billion, but due to construction and regulatory delays (and now lawsuits between the principals involved) it may cost significantly more than that and the completion date has been extended by months, or even years.

At this point, the total cost may exceed $17 billion and it may take an extra year to complete — for a total of 2.4 GW of installed capacity over 11 years of construction and delays, at a total cost of $7.08 billion per GigaWatt. It won’t get any better than that, but it may get much worse.

The 10-year construction plan is already behind schedule by 14-months, and now faces an additional (up to) 18-month delay.

PennEnergy: Southern Co. might spend [another] $8B on nuclear plant
ABC News: Builder Projects 18-Month Delay for Nuclear Plant in Georgia

One point about Plant Vogtle (the official name of the plant) is that the two 1200 MW (1.2 GW) reactors are of the latest GE/Toshiba AP-1000 design, noted for their passive safety systems and additional safety redundancies built into the power plant. If you’re going to build a nuclear power plant it might as well be the safest one.

As new capacity is added to global electrical grids, more of it is renewable energy

More utility companies are adding new renewable energy capacity as opposed to adding new non-renewable energy capacity due to faster installation time frames, fewer regulatory delays, the lack of fuel supply concerns going forward, and total installation cost per GigaWatt.

In 2013, of the 207 GW added to the world’s electrical grids — renewable energy accounted for 120 GW of new installations, while 87 GW accounted for non-renewable energy.

Once the 2014 numbers are released to the public, the renewable energy statistic will have improved over 2013’s numbers. And 2016 should easily surpass the 70/30 metric.

It’s easy to visualize this in the chart below.

Global generation capacity additions to 2013 - renewables vs. non-renewables. Image courtesy of IRENA.
Global generation capacity additions – renewables vs. non-renewables. Image courtesy of IRENA.

As renewable energy displaces non-renewable energy additions to the grid — remember that renewable energy gets only 1/4 of the subsidies that fossil fuel energy gets!

See: Energy Subsidies: The Case for a Level Playing Field

Imagine if renewable power generation got the same subsidies as non-renewable energy power generation

In practical terms, it would mean that 100% of all new power generation would be renewable energy.

Also, the renewable energy manufacturing sector would need to accelerate production to meet demand — meaning many hundreds of thousands of permanent jobs would be created immediately after the levelized subsidy was announced.

Between 2017-2019 — and even with the higher subsidies enjoyed by coal, nuclear, and oil & gas — it will cost less to install new renewable energy power plants than to install new non-renewable energy power plants.

Germany is one of the countries leading the transition to renewable energy

Due to German public pressure in the aftermath of the Fukushima-Daiichi incident in March 2011, Germany shut down nearly half of their nuclear power plants and were forced to accelerate their transition timeline to renewable energy.

This unexpected development created additional costs for Germany, but regardless, their Energiewende program is still a stunning renewable energy success story.

Although progress has slowed from the frenetic pace of 2011-2013, Germany is very much a world leader in the transition to renewable energy.

Renewable energies were the number 1 source of power production for the first time ever. [In Germany]

Renewables gained slightly in 2014 and now comprise 27.3 percent of domestic power consumption.

They have now permanently displaced lignite [brown coal] as the top source of power in the electricity mix. — The Energiewende in the Power Sector : State of Affairs 2014 (downloadable PDF)

Here is a nice chart, courtesy of our friends at the Fraunhofer Institute in Germany.

How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.
How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.

There is no doubt that the world will transition to renewable energy, and even major oil companies like Shell and BP are in agreement that by the year 2100, almost 95% of all energy demand will be met by renewable energy.

In one scenario, Shell says that by 2060 the largest energy provider will be solar power.

How quickly that energy transition will occur, is what the present conversation is all about

Increasingly, the conversation centres around matching renewable energy subsidies with the (4x higher) subsidies enjoyed by coal, nuclear, and oil & gas power generation.

So get ready to breathe fresh air, because change is coming!

Related Articles:

Thank you to our friends at IRENA and at Fraunhofer Institute for their valuable graphics!

Air Pollution Costs the West Almost $1 Trillion Annually

Air Pollution Costs the West Almost $1 Trillion Annually | 07/12/14
by John Brian Shannon John Brian Shannon

Air pollution has a very real cost to our civilization via increased healthcare costs, premature deaths, lowered productivity, environmental degradation with resultant lowered crop yields, increased water consumption and higher taxation.

However, air pollution is only one cost associated with fossil fuel use.

Smokestack Image Credit: Alfred Palmer
Smokestack image credit: Alfred Palmer

There are three main costs associated with energy

  1. The retail price that you pay at the gas pump or on your utility bill for example (which is paid by consumers)
  2. The subsidy cost that governments pay energy producers and utility companies (which is ultimately paid by taxpayers)
  3. The externality cost of each type of energy (which is paid by taxpayers, by increased prices for consumers, and the impact on, or the cost to, the environment)

Externality cost in Europe and the U.S.A.

A recent report from the European Environment Agency (EEA) states that high air pollution levels (one type of externality) in the EU cost society €189 billion every year and it’s a number that increases every year. (That’s $235 billion when converted to U.S. dollars)

To put that number in some kind of context, the cost of the air pollution externality in the EU annually, is equal to the annual GDP of Finland.

Let’s state that even more clearly. The amount of taxation paid by EU taxpayers every year to pay for airborne fossil fuel damage is equal to Finland’s entire annual economic output!

It’s getting worse, not better, notwithstanding recent renewable energy programs and incentives. Even the admirable German Energiewende program is barely making an impact when we look at the overall EU air quality index.

Of the 30 biggest facilities it identified as causing the most damage, 26 were power plants, mainly fueled by coal in Germany and eastern Europe. — Barbara Lewis (Reuters)

That’s just Europe. It’s even worse in the U.S., according to a landmark Harvard University report which says coal-fired power generation alone costs the U.S. taxpayer over $500 billion/yr in externality cost.

Each stage in the life cycle of coal—extraction, transport, processing, and combustion—generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and thus are often considered as “externalities.”

We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually.

Many of these so-called externalities are, moreover, cumulative.

Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of non fossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive.

We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world.” — Full Cost Accounting for the Life Cycle of Coal by Dr. Paul Epstein, the Director of Harvard Medical School Center for Health and the Global Environment, and eleven other co-authors

The report also notes that electricity rates would need to rise by another .09 to .27 cents per kilowatt hour in the U.S. to cover the externality cost of American coal-fired electricity production.

The externality cost for solar or wind power plants is zero, just for the record

Dr. Epstein and his team notes: “Coal burning produces one and a half times the CO2 emissions of oil combustion and twice that from burning natural gas (for an equal amount of energy produced).”

There’s the argument to switch from coal to natural gas right there

Also in the Harvard report in regards to the intrinsic inefficiency of coal:

Energy specialist Amory Lovins estimates that after mining, processing, transporting and burning coal, and transmitting the electricity, only about 3% of the energy in the coal is used in incandescent light bulbs.

…In the United States in 2005, coal produced 50% of the nation’s electricity but 81% of the CO2 emissions.

For 2030, coal is projected to produce 53% of U.S. power and 85% of the U.S. CO2 emissions from electricity generation.

None of these figures includes the additional life cycle greenhouse gas (GHG) emissions from coal, including methane from coal mines, emissions from coal transport, other GHG emissions (e.g., particulates or black carbon), and carbon and nitrous oxide (N2O) emissions from land transformation in the case of MTR coal mining.” — Full Cost Accounting for the Life Cycle of Coal report

It’s not like this information is secret. All European, American, and Asian policymakers now know about the externality costs of coal vs. renewable energy. It’s just that until recently everyone thought that the cost of switching to renewable energy, was higher than the cost of fossil externalities.

It’s not only an economic problem, it’s also a health problem

Air pollution impacts human health, resulting in extra healthcare costs, lost productivity, and fewer work days. Other impacts are reduced crop yields and building damage.

Particulate matter and ground-level ozone are two of the main pollutants that come from coal.

90% or more of Europeans living in cities are exposed to harmful air pollution. Bulgaria and Poland have some of the worst pollution of the European countries.

An estimated 400,000 premature deaths in European cities were linked to air pollution in 2011. — CleanTechnica

Externality cost in China

Remember the Beijing Olympics where the city’s industry and commercial business were shut down to allow visitors and athletes to breathe clean air during their stay (and Wow!) look at their clear blue sky for the first time in decades. Great for tourists! Bad for Beijing business and industry, with the exception of the tourism industry (for one month) of course.

The Common Language Project reported in 2008 that premature deaths in China resulting from fossil fuel air pollution were surpassing 400,000 per year.

China faces a number of serious environmental issues caused by overpopulation and rapid industrial growth. Water pollution and a resulting shortage of drinking water is one such issue, as is air pollution caused by an over-reliance on coal as fuel. It has been estimated that 410,000 Chinese die as a result of pollution each year. — clpmag.org

The die is cast since it is becoming common knowledge that renewable energy merely requires a small subsidy to assist with power plant construction and grid harmonization — while fossil fuels continue to require truly massive and ongoing subsidies to continue operations.

Subsidy cost of fossil fuels

Already there is talk of ending fossil fuel subsidies, which in 2014 will top $600 billion worldwide

Want to add up the total costs (direct economic subsidy and externality cost subsidy) of fossil fuels?

Add the $600 billion global fossil fuel subsidy to the to the $2 trillion dollars of global externality cost and you arrive at (approx) $2.5 trillion dollars per year. Then there is the more than 1 million premature deaths globally caused by air pollution. All of that is subsidized by the world’s taxpayers.

Compare that to the total costs of renewable energy. Well, for starters, the economic subsidy dollar amount for renewable energy is much less (about $100 billion per year globally) and there are no externality costs.

No deaths. No illness. No direct or related productivity loss due to a host of fossil fuel related issues (oil spills, coal car derailment, river contamination, explosions in pipelines or factories) for just a very few examples.

The fossil fuel industry is a very mature industry, it has found ways to do more with ever-fewer employees, and it gets more subsidy dollars than any other economic segment on the planet.

By comparison, the renewable energy industry is a new segment, one that requires many thousands of workers and it gets only relative handfuls of subsidy dollars. And, no externalities.

It becomes clearer every day that high-carbon fossil must be displaced by renewable energy

No longer is it some arcane moral argument that we should switch to renewables for the good of the Earth; Fossil fuel is proving to be a major factor in human illness/premature deaths, it sends our money abroad to purchase energy instead of keeping our money in our own countries, and the wholly-taxpayer-funded subsidy cost of fossil is out of control and getting worse with each passing year.

The time for dithering is past. It’s time to make the switch to renewable energy, and to start, we need to remove the worst polluting power plants from the grid (and at the very least, replace them with natural gas powered plants) or even better, replace them with hybrid wind and solar power plants.

To accomplish this, governments need to begin diverting some of the tens of billions of dollars annually paid to the fossil fuel industry to the renewable energy industry.

Germany’s Energiewende program was (and still is) an admirable first step. Once Germany has completed it’s energy transition away from oil, coal and nuclear — having replaced all of that generation capacity with renewable energy and natural gas, only then can it be hailed a complete success — and German leaders should go down in history as being instrumental in changing the world’s 21st century energy paradigm.

Dank an unsere deutschen Freunde! (With thanks to our German friends!)

If only every nation would sign-on to matching or exceeding the ongoing German example, we wouldn’t have 1 million premature deaths globally due to fossil fuel burning, we wouldn’t have almost 2 trillion dollars of externality cost, we wouldn’t need $600 billion dollars of direct subsidies for fossil fuel producers — and we would all live in a healthier environment, and our plant, animal, and aquatic life would return to their normally thriving state.

Taxes would reflect the global $2.5 trillion drop in combined fossil fuel subsidy and fossil fuel externality costs, employment stats would improve, productivity would increase, the tourism industry would receive a boost, and enjoyment of life for individuals would rebound.

It’s a truism in the energy industry that all energy is subsidized, of that there is no doubt. Even renewable energy receives tiny amounts of subsidy, relative to fossil.

But it is now apparent that over the past 100 years, getting ‘the best (energy) bang for the buck’ has been our nemesis. The energy world that we once knew, is about to change.

The world didn’t come to an end when air travel began to replace rail travel in the 1950’s. Now almost everyone travels by air, and only few travel by train. And what about the railway investors didn’t they lose their money when the age of rail tapered-off? No, they simply moved their money to the new transportation mode and made as much or more money in the airline business.

Likewise, the world will not come to an end now that renewable energy is beginning to displace coal and oil. Investors will simply reallocate their money and make as much or more money in renewable energy.

What Is New under the Sun?

Amonix.com
Amonix 34.5% peak efficiency solar module record
Verified by National Renewable Energy Laboratory – May, 2012

by John Brian Shannon

Most installed solar panels (also known as solar modules) in North America and Europe have an 11% efficiency-rating. That is, of the sunlight falling on them approximately 11% of that sunlight is converted into direct current electricity.

These are the panels with which we are most familiar and for the countries mentioned, they provide a tiny percentage of total electrical production there.

For example, Germany has over one-million solar panels installed with more installed every day. Even so, all of Germany’s solar panels combined supply less than 3% of German electricity needs.

Thanks to our computer-controlled electrical grids, utility companies can switch to the lowest cost minute-by-minute electricity during the day due to something called ‘Merit Order’ ranking.

When the Sun is shining, every kilowatt of solar energy is spoken-for as it is by far the lowest-priced electricity available to utility companies during the daylight hours. In Germany, electrical rates drop by 15 – 40% during the daytime — due to the lower Merit Order price of solar power.

Solar provides lower cost electricity than the electricity produced by feeding a coal-fired burner with expensive coal ($70 – $155 per ton, plus transportation) with the required small army of personnel to unload coal from rail cars, oversee safety in the power plant, load the coal and otherwise maintain a billion dollar coal-fired power plant for example.

What is new under the Sun, is that many of those old 11% efficiency solar panels are soon to be replaced with 22%-24% efficiency solar panels. That’s right, technology marches along and not just in regards to video games! The latest production solar panels are a ‘drop in’ replacement for the older panels.

Yes, a 100 megawatt solar power plant can become a 200 megawatt power plant — just by replacing the panels with more efficient ones.

And, unlike doubling the capacity of a coal-fired, natural gas or nuclear power plant, this won’t cost another billion dollars, nor entail yet another lengthy political fight to obtain approval. No, the old, low-efficiency panels will simply be unbolted from their brackets and the new higher-efficiency ones will be bolted into place. All of which should take a few weeks while the rest of the solar power plant continues to operate normally.

It turns out that due to mass production and a competitive marketplace, the per panel price of the new efficient panels is lower than the originally-installed panels.

To oversimplify this equation, Germany will jump from 3% solar electrical power production to 6% — just by replacing their panels with more efficient ones.

Where will it end you ask? Earlier this year, a new solar panel was announced which surpasses the 24% panel by a significant margin.

In only ten years, we have come from panels with an 11% efficiency-rating typically costing around $100. per panel, to 24% efficiency-rating panels costing $20. per panel at utility-scale volumes. Within 24-months, Amonix 33% efficiency (CPV) solar panels will go into full production. At this rate, I can’t wait for 2030!

To watch a YouTube video about the Amonix 33% CPV solar program, click here.

JOHN BRIAN SHANNON

To follow John Brian Shannon on social media – place a check-mark beside your choice of Facebook, Twitter or LinkedIn: FullyFollowMe/johnbrianshannon

Clean Energy: How To Get There From Here!

by John Brian Shannon

Everyone knows more electricity is needed in developed nations and electrical needs in developing nations are skyrocketing. No problem there — everyone deserves to live a good lifestyle and enjoy our modern technology to the fullest.

The problem occurs in the means used to generate that electricity. Some kinds of electrical power generation cause huge billowing clouds of pollution 24-hours per day, every day of the year.

All of this adds up to astronomically high costs for electrical power producers and users, which can be measured in several different ways.

For instance, new conventional nuclear  power plants can cost up to $20 billion dollars each. Added to that cost, is the cost incurred to store thousands of tons of (so-called) spent nuclear fuel. Some spent fuels must be stored in air-conditioned bunkers for up to 20,000 years, with never more than 36 hours of A/C interruption. The costs of that are so high, they can’t even be calculated.

New coal plants cost about $250 million dollars/per hundred megawatts. A hundred megawatts isn’t much, by the way – enough to power 16,000 power-hungry A/C homes in the U.S. or about 29,000 homes in China. Some coal-fired power plants cost upwards of $1 billion dollars. The cost of the coal must be added to the equation from day one – the price of which rises and falls typically between $80.00 and $160.00 per ton, plus the significant transportation costs. It may interest you to know that China burned 3 billion tons of coal last year, emitting 7.2 billion tons of CO2 and other toxic gasses. Approximately 410,000 Chinese people die every year as a result of pollution-related deaths.

Natural gas power plants are clean, they cost a little more than comparable coal plants and the only real drawback is they emit huge volumes of CO2. Unlike coal, they emit little in the way of other toxic gasses or soot. Again, a costly and continuous and supply of natural gas must be available every day of the year.

No matter which choice is made, the construction of electrical generation power plants incurs high costs to nations — and the cheapest options come with the highest fuel and health-care costs.

In the United States, nuclear power receives significant subsidies on the order of $3.50 billion per year on average and oil and gas receive $4.86 billion subsidy dollars per year on average.

fossil-fuel-subsidies-490x407

We can see from the chart above that in the United States most forms of electrical power generation are heavily subsidized. Who could afford electricity otherwise?

If solar, wind and geothermal energy were subsidized at the same per kilowatt rate as Oil & Gas, Coal, or Nuclear — total U.S. emission levels would drop dramatically and Americans would be breathing much cleaner air.

National health-care costs would drop, acid rain damage would decrease to near zero, crop damage from power plants would become a thing of the past and meeting international agreements such as the Kyoto Protocol would become boringly simple.

To have the enjoyment of breathing clean air and the other benefits listed above, all governments should calculate the highest subsidy they pay per kilowatt hour and then begin paying ALL electricity providers that same per kilowatt hour subsidy.

Solar power, wind power and geothermal would then become ultra-competitive with coal, N-power and Oil & Gas. Every large rooftop area, such as big box retail outlets like IKEA stores for one good example, could assist national power production and air-quality goals by lowering demand on the grid and potentially adding power to it, while helping to enhance the health of citizens.

One nation has already begun such a program and is right on schedule. Denmark has decided that all energy, including transportation energy(!) will come from renewable sources by 2050 and they have made substantial progress in only a few short years.

Even with the patchwork and grossly unlevel subsidy regimes in place in the United States, this transition is already occurring. Organizations from the U.S. Navy, to IKEA and WalMart, some cities and towns, the Big Three auto manufacturers and many more businesses and organizations, are converting their unused rooftop spaces and vacant land into clean power stations — thereby tapering the need for behemoth, pollution-spewing power plants.

If governments standardized the subsidies they already pay for Oil & Gas, Coal and Nuclear power (instead of paying billions of dollars to some power providers — whilst paying pennies to others) we would all breathe a lot easier.

We need oil & gas, coal, natural gas and conventional nuclear power to feed our grids, what I’m  advocating for is directly comparable subsidies for all electricity providers, including green energy — and there are no real reasons why such subsidy levelization couldn’t soon happen in every country.

ABOUT JOHN BRIAN SHANNON

I write about green energy, sustainable development and economics. My blogs appear in the Arabian Gazette, EcoPoint, EnergyBoom, Huffington Post, United Nations Development Programme, WACSI — and other quality publications.

“It is important to assist all levels of government and the business community to find sustainable ways forward for industry and consumers.”

Green Energy blog: http://johnbrianshannon.com
Economics blog: https://jbsnews.wordpress.com
Twitter: @JBSCanada