Creating Jobs via Renewable Energy Adoption

Creating Jobs via Renewable Energy Adoption | 07/02/15
by John Brian Shannon John Brian Shannon

Adding new jobs to the economy is always a good thing

In good times or bad, adding more jobs to the economy always equates to higher GDP, lower debt-to-GDP levels, lower unemployment insurance expenditures and higher revenues for governments from income tax and sales tax.

There are no examples where adding net jobs to an economy has resulted in a net loss to the economy

It’s positive for individuals too. Higher employment levels generally lead to higher incomes, small and large businesses notice increased revenue and there is always the chance that companies may begin to expand their facilities and hire more staff to handle increased sales.

Which is why the case to add more renewable energy is so compelling

IRENA Renewable Energy jobs infographic - Global
Global jobs created by the Renewable Energy industry. Image courtesy of IRENA.

Over decades of time, mature industries have figured out ways to increase output with fewer employees.

In the Top 10 on the mature industry list, must certainly be hydro-electric power plants, followed by nuclear power plants and gas-fired power plants. There we have astronomical installation costs and employment numbers — but once construction of the power plant is completed only very low staffing levels remain to operate the power plant.

Which is very unlike the case with renewable energy. Why? Because once a multi-billion dollar hydro-electric dam is built, it’s built. You don’t need to build thousands of them per day.

It’s the same with multi-billion dollar nuclear power plants — all you need after the construction phase ends are a small number of highly trained people to monitor the various systems. And some security people. That’s it.

With solar panels, a factory must produce 1000 per day (or more, in the case of larger factories) every weekday. Suitable markets must be found, factories must be built/leased, production floors must be built, materials sourced, and the panels themselves must be designed and engineered, assembled, packed, shipped and accounted for. Accountants do what they must do, marketing people manage a steady train of media events, trade shows and advertising programs, and on and on it goes — and all of it is a part of the solar industry. That activity creates work for thousands of people, every workday of the year. (And that short description doesn’t begin to cover it)

Then there are the solar panel installers, the sales teams/estimators, and the companies that build the inverter systems, which is a whole other value chain.

The wind power industry can also make high employment/lower power plant cost claims — although wind turbines average about $1 million dollars each — as opposed to solar panels which mostly range from $10 each to $400 each, depending on their size and composition.

Renewable energy is hugely labour-intensive and many thousands of permanent jobs are created — quite the opposite of conventional power generation

It is worth commenting that 2014 renewable energy employment numbers (once they become available) will show a significant improvement over 2013 numbers.

The entire industry is surging forward unequally, but renewable energy growth in some nations is trending upwards like the Millennium Falcon trends upwards.

Below is a breakdown graphic showing the labour intensity of the various types of renewable energy.

Globally, 6.5 million jobs were created in 2013 from renewable energy.
Globally, 6.5 million jobs were created in 2013 from renewable energy. Image courtesy of IRENA.

We can also look at a breakdown graphic of jobs per MW of electricity produced where we see that coal, nuclear, and oil & gas require very few humans per MW.

Potential jobs by MegaWatt (MW) by energy type. Image courtesy of IRENA.
Potential jobs by MegaWatt (MW) by energy type. Image courtesy of IRENA.

There’s no doubt that global energy demand is growing, not only in the developed world, but in the developing world as well.

Each kind of energy (non-renewable and renewable energy) has it’s own pros and cons.

One of them, is that non-renewable energy requires far fewer humans over the lifetime of the power plant.

Renewable energy on the other hand, is a rapidly-growing manufacturing, installation, and marketing industry that requires evermore blue collar and white collar employees.

And now that solar power, wind power, and biomass power have reached — or are within months of matching (per kWh) price parity with non-renewable power plants — the question becomes;

Do we want to employ 1.3 persons full-time per MW, or do we want to employ up to 24 people full-time per MW?

For comparison purposes, the typical coal, gas, or nuclear power plant can supply 1000 MW (or 1 GigaWatt) of electrical generation capacity, while the average wind turbine can supply 1 MW each.

The average 1 MW wind turbine costs about $1 million apiece, so to get 1 GW of electrical generation capacity, you need to install 1000 of them (1000 x $1 million each = $1 billion total) and the installation and connection to the grid of that many turbines might take up to 24 months.

Each 1 GW installation of coal, gas, or nuclear power, costs well over $1 billion and can take up to 15 years to construction completion.

For example, the 2.4 GW nuclear power plant under construction in Vogtle, Georgia was originally planned to cost $14 billion, but due to construction and regulatory delays (and now lawsuits between the principals involved) it may cost significantly more than that and the completion date has been extended by months, or even years.

At this point, the total cost may exceed $17 billion and it may take an extra year to complete — for a total of 2.4 GW of installed capacity over 11 years of construction and delays, at a total cost of $7.08 billion per GigaWatt. It won’t get any better than that, but it may get much worse.

The 10-year construction plan is already behind schedule by 14-months, and now faces an additional (up to) 18-month delay.

PennEnergy: Southern Co. might spend [another] $8B on nuclear plant
ABC News: Builder Projects 18-Month Delay for Nuclear Plant in Georgia

One point about Plant Vogtle (the official name of the plant) is that the two 1200 MW (1.2 GW) reactors are of the latest GE/Toshiba AP-1000 design, noted for their passive safety systems and additional safety redundancies built into the power plant. If you’re going to build a nuclear power plant it might as well be the safest one.

As new capacity is added to global electrical grids, more of it is renewable energy

More utility companies are adding new renewable energy capacity as opposed to adding new non-renewable energy capacity due to faster installation time frames, fewer regulatory delays, the lack of fuel supply concerns going forward, and total installation cost per GigaWatt.

In 2013, of the 207 GW added to the world’s electrical grids — renewable energy accounted for 120 GW of new installations, while 87 GW accounted for non-renewable energy.

Once the 2014 numbers are released to the public, the renewable energy statistic will have improved over 2013’s numbers. And 2016 should easily surpass the 70/30 metric.

It’s easy to visualize this in the chart below.

Global generation capacity additions to 2013 - renewables vs. non-renewables. Image courtesy of IRENA.
Global generation capacity additions – renewables vs. non-renewables. Image courtesy of IRENA.

As renewable energy displaces non-renewable energy additions to the grid — remember that renewable energy gets only 1/4 of the subsidies that fossil fuel energy gets!

See: Energy Subsidies: The Case for a Level Playing Field

Imagine if renewable power generation got the same subsidies as non-renewable energy power generation

In practical terms, it would mean that 100% of all new power generation would be renewable energy.

Also, the renewable energy manufacturing sector would need to accelerate production to meet demand — meaning many hundreds of thousands of permanent jobs would be created immediately after the levelized subsidy was announced.

Between 2017-2019 — and even with the higher subsidies enjoyed by coal, nuclear, and oil & gas — it will cost less to install new renewable energy power plants than to install new non-renewable energy power plants.

Germany is one of the countries leading the transition to renewable energy

Due to German public pressure in the aftermath of the Fukushima-Daiichi incident in March 2011, Germany shut down nearly half of their nuclear power plants and were forced to accelerate their transition timeline to renewable energy.

This unexpected development created additional costs for Germany, but regardless, their Energiewende program is still a stunning renewable energy success story.

Although progress has slowed from the frenetic pace of 2011-2013, Germany is very much a world leader in the transition to renewable energy.

Renewable energies were the number 1 source of power production for the first time ever. [In Germany]

Renewables gained slightly in 2014 and now comprise 27.3 percent of domestic power consumption.

They have now permanently displaced lignite [brown coal] as the top source of power in the electricity mix. — The Energiewende in the Power Sector : State of Affairs 2014 (downloadable PDF)

Here is a nice chart, courtesy of our friends at the Fraunhofer Institute in Germany.

How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.
How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.

There is no doubt that the world will transition to renewable energy, and even major oil companies like Shell and BP are in agreement that by the year 2100, almost 95% of all energy demand will be met by renewable energy.

In one scenario, Shell says that by 2060 the largest energy provider will be solar power.

How quickly that energy transition will occur, is what the present conversation is all about

Increasingly, the conversation centres around matching renewable energy subsidies with the (4x higher) subsidies enjoyed by coal, nuclear, and oil & gas power generation.

So get ready to breathe fresh air, because change is coming!

Related Articles:

Thank you to our friends at IRENA and at Fraunhofer Institute for their valuable graphics!

German renewable energy leaves coal behind

German renewable energy leaves coal behind | 06/12/14
Originally published at johnbrianshannon.com by John Brian Shannon John Brian Shannon

Germany, a thriving economic powerhouse under the Chancellorship of Angela Merkel, is also a renewable energy superstar and a country that is loaded with potential.

Lately, the Germans have taken a break from aggressively adding renewable energy to their grid by ending a lucrative feed-in-tariff (FiT) subsidy program that ramped-up the adoption of solar, wind and biomass installations across the country.

Not that these so-called ‘lucrative’ subsidies approached anywhere near what fossil fuel and nuclear power plant operators receive and have received since the postwar period began, as all energy in Germany (like most countries) is heavily subsidized by taxpayers but only the (much smaller) renewable energy subsidies get the headlines. Go figure.

Chancellor Angela Merkel made the courageous decision to accelerate the shutdown Germany’s nuclear power plants in the aftermath of the Fukushima disaster in 2011 after stress tests of German nuclear power plants showed safety concerns existed within their nuclear fleet. She ushered in meaningful FiT subsidies to speed the German Energiewende program towards its goal of transition to renewable energy and greater energy efficiency — which had received only sporadic subsidies prior to Merkel.

Snapshot of the German Energiewende program

  • A popular Germany-only program to move towards a highly industrialized, sustainable green economy
  • Full phase-out of nuclear energy by 2022
  • 80-95% reduction in greenhouse gases by 2050
  • Minimum of 80% renewables in the power sector
  • 50% increase in energy efficiency by 2050

Germany’s utility companies haven’t seen change like this since WWII. After a century of serving conventionally-generated electrical power to a captive electricity market — approximately 1/3 of all German electricity is now generated via renewable energy if you include nuclear, biomass and hydro-power. That’s historic change by any standard.

Germany-renewable-energy-power-capacity at October 29, 2014 Fraunhofer Institute image
Germany renewable energy power total installed capacity at October 29, 2014. This is not how much electricity Germany actually used — it represents how much total capacity exists in the German electricity grid when all power plants are running at their full rated capacity. Image courtesy of the Fraunhofer Institute. © Fraunhofer ISE

Although solar panel outputs are lower during the winter months, over the late spring and summer of 2014 renewable energy generated more than 75% of total demand on many of those days. Not bad, for 5 years of relatively minor renewable energy subsidy euros provided by a (now ended) Feed-in-Tariff!

Germany renewable energy generation for the first 10 months of 2014 courtesy of the Fraunhofer Institute
This chart shows how much electricity was actually produced by each type of energy in Germany for the first 10 months of 2014. Some of this energy was exported to nearby nations as a cash-on-delivery export. Image courtesy of the Fraunhofer Institute. © Fraunhofer ISE

Another benefit of the switch to renewable energy was the added billions of euros of economic activity generated annually by European solar panel and wind manufacturing companies like Vestas, SolarWorld, Siemens, ABB, and the jobs created for hundreds of SME renewable energy installation companies in the country.

Exports of German solar panels and wind turbines went through the stratosphere — once Germany proved to the world that solar and wind could replace lost nuclear power generation capacity at a much lower cost than building new, multi-billion euro, nuclear or coal-fired power plants with their massive footprint on the land and their obscene water usage levels.

Germany renewable energy power generation change (in absolute terms) for the first 10 months of 2014 compared to the first 10 months of 2013. Image courtesy of the Fraunhofer Institute
Germany renewable energy power generation change (in absolute terms) for the first 10 months of 2014 when compared to the first 10 months of 2013. Image courtesy of the Fraunhofer Institute. © Fraunhofer ISE

For Germany, installing their own solar, wind and biomass power plants proved to the world that large-scale renewable energy could add huge capacity to a nation’s electrical grid and that different types of renewable energy could work together to balance the over-hyped ‘intermittency problem’ of renewable energy.

It turns out that in Germany, during the long, hot days of summer when solar panels are putting out their maximum power the wind actually tapers off, but at night the wind blows at a very reliable rate. Karmic bonus! That about covers the summer months.

During the winter months in Germany, the wind blows day and night, adding significant amounts of reliable power to the national grid.

Germany solar and wind energy are complementary, helping to stabilize the German electricity grid without adding pollution to the air. Image courtesy of the Fraunhofer Institute
Germany solar and wind energy are complementary, helping to stabilize the German electricity grid without adding any pollution to the air. Chart shows actual output for the first 10 months of 2014. Image courtesy of the Fraunhofer Institute. © Fraunhofer ISE

And now, all of that renewable energy capacity is operating without FiT subsidy — quite unlike the coal, nuclear, and oil and gas power generation in the country which require huge and ongoing subsidies every day of the year to continue operations. That’s every day since 1946, meine Freunde!

Also a factor with coal-fired power plants are the massive healthcare spending to combat the adverse health effects of fossil fuel burning/air pollution on humans and animals, on the agriculture sector. And the hugely expensive security infrastructure necessary to preclude theft of nuclear materials and nuclear related terror attacks.

While the rest of Europe (with the exception of notables like Norway, Sweden and Luxembourg) wallowed in recession or near-recession since 2008, the German economic powerhouse not only set global export records year-on-year, it bailed-out numerous other EU economies like Greece, Spain, Portugal, Italy and others, and began an unprecedented domestic renewable energy program. And now, Germany is an electricity net exporter.

That’s heady stuff, even for this industrious nation of 82 million.

Germany imports and exports of electricity 2001-2014. Image courtesy of the Fraunhofer Institute
Germany imports and exports of electricity 2001-2014. Germany exported a record 33.8 TeraWatt hours of electricity in 2013 for truckloads of cold, hard cash. Image courtesy of the Fraunhofer Institute. © Fraunhofer ISE

Where to next?

Not only has Germany added many TeraWatt hours (TWh) of clean, renewable energy to its electrical grid to replace lost nuclear power generation, it is now an electricity net exporter — raking in millions of euros per year at present — and make that an electricity exporting superpower if they ever decide to revive their now defunct Feed-in-Tariff subsidy for renewable energy.

Replacing coal with renewable energy in Germany:

If Germany revived the previous FiT regime for 5 years, *all brown coal electrical power generation* could be eliminated within 10 years.

If Germany revived the previous FiT regime for 10 years, *all brown coal and black coal electrical power generation* could be eliminated within 10 years.

Replacing coal with renewable energy in Germany would save millions of Germans, Polish, Swiss, Austrians and others living downwind of German smokestacks from breathing toxic coal-fired air pollution. Think of the health care savings and the taxes involved to support this. Some people believe that the health care savings alone could far exceed the cost of any FiT subsidy.

Not only that, but as a result of leaving coal behind, historic buildings, concrete bridges and roadways would require less maintenance to repair the spalling caused by the acid rain from coal burning. Additionally, Germany would save the millions of litres of water consumed annually by the coal industry.

Replacing coal with renewable energy in Germany would create thousands more jobs for solar, wind, and biomass manufacturing and construction, the agriculture sector would begin to show ever-improving crop outputs and importantly, leave clean air to breathe for tourists, expats and German citizens!

A note about (renewable energy) Hybrid power plants

So-called Hybrid power plants offer the best of both worlds in the renewable energy space by providing plenty of electricity day and night. This Hybrid power plant uses solar panels and wind turbines, while others can incorporate biomass or hydro-electricity dams, along with wind or solar, or both.
Hybrid power plants offer the best of both worlds providing balanced electricity generation, day and night.

An energy policy stroke of genius for Germany could come in the form of a new subsidy (a FiT or other type of subsidy) that could be offered to promote the installation of Hybrid power plants — whereby 30% of electricity generated at a given power plant site would come from solar and the balance could come from any combination of wind, biomass, or hydro-electric generation. (30% solar + 70% various renewable = 100% of total per site output)

As long as all of the electrical power generation at such a site is of the renewable energy variety and it all works to balance the intermittency of solar power, then it should receive automatic approval for the (hereby proposed) Energiewende Hybrid Power Plant subsidy.

When all the different types of renewable energy work in complementary fashion on the same site, energy synergy (the holy grail of the renewable energy industry) will be attained.

More jobs, billions of euros worth of electricity exports to the European countries bordering Germany, lower health care spending, less environmental damage and better agricultural outputs — all at a lower subsidy level than coal and nuclear have enjoyed every year since 1946 — are precisely why Germans should renew their commitment to renewable energy.

Seriously, what’s not to like?

Bonus energy graphic shows the various kinds of energy extant in Germany at the end of 2014.

How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.
How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.

Recommended Articles:

As Nuclear steps aside, Renewable Energy steps up to power Europe

As Nuclear steps aside, Renewable Energy steps up to power Europe | 16/08/14
by John Brian Shannon John Brian Shannon

Nuclear reactors are starting to shut down in Europe

It began in earnest in the wake of the Fukushima disaster when Germany inspected its problem-plagued nuclear power plants and decided to take 9 of its nuclear power plants offline in 2011 and the rest offline by 2022.

There is plenty of public support in the country for Germany’s planned nuclear closures, even with the additional fee added to each German electricity bill to pay for nuclear power plant decommissioning, which completes in 2045.

Switzerland likewise has decided to get out of the nuclear power business beginning in 2015 and decommission their nuclear power plants by 2045.

Other European nations are also looking at retiring their nuclear power plants. But the news today is about the UK, Belgium, Germany and Spain.

Heysham_Nuclear_Power_Station UK operated by EDF
Heysham Nuclear Power Station in the UK which is operated by EDF of France. Image courtesy: CleanTechnica.com

In the UK, four (French-operated) EDF reactors built in 1983 have been shut down after one of them was found to have a crack in its centre spine. (EDF stands for Electricity de France which is a French utility responsible for managing many nuclear reactors)

At first only the affected unit was taken offline (in June) but upon further inspection it was determined that the other three were at risk to fail in the coming months. Whether or not these four reactors can be repaired economically — all were scheduled to be decommissioned before 2020.

The shortfall in electrical generation due to these unscheduled nuclear power plant shutdowns has been met by 5 GW of new wind power generation, which has seamlessly stepped in to fill demand.

Additional to that, 5 GW of solar power has been added to the UK grid within the past 5 years. And that’s in cloudy olde England, mates!

In Belgium, 3 out of 5 of their nuclear power plants are offline until December 31, 2014 due to maintenance, sabotage, or terror attacks — depending who you talk to.

Belgium’s Doel 4 reactor experienced a deliberate malfunction last week and workers in the country’s n-plants are henceforth directed to move around inside the plants in pairs.

Also, their Tihange 2 reactor won’t be ready to resume power production until March, 2021. See this continuously-updated list of nuclear power plant shutdowns in Belgium.

Further, the utility has advised citizens that hour-long blackouts will commence in October due to a combination of unexpected n-plant shutdowns and higher demand at that time of year.

Belgian energy company Electrabel said its Doel 4 nuclear reactor would stay offline at least until the end of this year after major damage to its turbine, with the cause confirmed as sabotage.

Doel 4 is the youngest of four reactors at the Doel nuclear plant, 20 km north of Antwerp, Belgium’s second-biggest city.

The country has three more reactors in Tihange, 25 km southwest of the city of Liege.

Doel 1 and 2, which came on line in 1975, are set to close in 2015. Tihange 1, which also started operation in 1975 and was designed to last 30 years, got a 10-year extension till 2015.

The two closed reactors Doel 3 and Tihange 2 were connected to the grid in 1982 and 1983. Doel 4 and Tihange 3, which came on line in 1985, were operating normally until the closure of Doel 4 last week.

The shutdown of Doel 4’s nearly 1 gigawatt (GW) of electricity generating capacity as well as closures of two other reactors (Doel 3 and Tihange 2) for months because of cracks in steel reactor casings adds up to just over 3 GW of Belgian nuclear capacity that is offline, more than half of the total.

In Britain, EDF Energy, owned by France’s EDF, took three of its nuclear reactors offline for inspection on Monday after finding a defect in a reactor of a similar design. – Reuters

In Germany, the nuclear power generation capacity missing since 2011 has been met by a combination of solar, wind, bio, natural gas, and unfortunately some coal. But that sounds worse than it is.

According to the Fraunhofer Institute, renewable energy produced about 81 TWh, or 31% of the nation’s electricity during the first half of 2014. Solar production is up 28%, wind 19% and biomass 7% over last year.

Meanwhile, with the exception of nuclear energy, all conventional sources are producing less. The output from gas powered plants was half of what it had been in 2010 and brown coal powered plants are producing at a similar level to 2010-2012. – CleanTechnica.com

Let’s see what our friends at the Fraunhofer Institute have to say in their comparison of the first half of 2013 vs. the first half of 2014.

German electricity production H1 2013 - H1 2014
Fraunhofer Institute compares energy production between the first half of 2013 and the first half of 2014.

Although unspoken by power company executives operating in Germany, Spain, and some other European countries, the panic felt by traditional power generators is due to the massive changes in ‘their’ market since 2009.

Things move slowly in the utility industry — ten years is seen as a mere eyeblink in time, as the industry changes very little decade over decade. Recent changes must be mind-blowing for European power company executives.

European-union-renewables-chart
European Union renewables by Eurostat — Renewable energy statistics. Licensed under Public domain via Wikimedia Commons This map displays 2012 results with a total of 20-30% renewable energy for 2012, but in 2013 renewable energy in Portugal registered 58.3% overall. By 2014, Portugal expects that 70% of its energy will come from renewable energy.

It occurs to me that the end of the conventional energy stranglehold on Europe parallels the ending of Star Wars VI.

Help me take this mask off

It’s a mask to hide behind when conventional power producers don’t want the facts aired.

Fossil and nuclear don’t want their Subsidies or Externalities advertised. Global fossil fuel and nuclear subsides topped $600 billion dollars in 2014, while the externality cost of fossil and nuclear may be as high as $2 trillion dollars annually. That’s a lot of hiding, right there.

Fossil fuel and nuclear power power producers don’t want the subsidies they’re paid to be publicly advertised — and they don’t want the renewable energy industry to have subsidies at all

Externalities are simply another form of subsidy to the fossil fuel and nuclear power industries which often take the form of massive public healthcare spending or massive environmental spending to mitigate the gigatonnes of toxic airborne emissions, or to monitor or repair environmental catastrophes such as oil spills.

Spain has ended it’s Feed-in-Tariff subsidy scheme for renewable energy, while keeping conventional power producer subsidies in place.

Not only that, suddenly homeowners aren’t allowed to collect power from the Sun or harvest power from the wind unless it is for their own use. Electricity cannot be collected by Spanish residents and then sold to the grid for example, nor to anyone else.

Spain’s government has taken it yet another step in a bid to keep the conventional energy companies from drowning in their tears. After a meteoric rise in wind and solar capacity, Spain has now taxed renewable energy power producers retroactively to 2012 and ruled that renewable energy will be capped to a 7.5% maximum profit. Renewable energy returns over the 7.5% threshold becomes instant tax revenue for the government. (Quite unlike conventional energy producers in the country which can make any amount of profit they want and continue to keep their subsidies)

While all of this has been going on, Spain and Portugal have quietly lowered their combined CO2 output by 21.3% since 2012 (equal to 61.4 million fewer tonnes of CO2) thanks to renewable energy.

But you’ll die

Not only has European renewable energy now stepped up to fill the multiple voids due to nuclear power plant maintenance and sabotage shutdowns, it has scooped incredible market share from conventional power producers.

In January 2014, 91% of the monthly needed Portuguese electricity consumption was generated by renewable sources, although the real figure stands at 78%, as 14% was exported. – Wikipedia

Unwittingly, the German and Spanish power companies have provided the highest possible compliment to the renewable energy industry, which, if publicized would read something like this;

We can’t compete with renewable energy that has equal amounts of subsidy. Therefore, remove the renewable energy subsidy while we keep ‘our’ traditional subsidies, until we can reorient our business model – otherwise, we perish!

Nothing can stop that now

Ending the European renewable energy Feed-in-Tariff schemes will only temporarily slow solar and wind installations as both have reached price-parity in recent months — and that, against still-subsidized conventional power generators!

Even bigger changes are coming to the European electricity grid over the next few years. Nothing can stop that now.

Tell your sister; You were right about me

Conventional power producers in Europe provided secure and reliable power for decades, it was what has powered the European postwar success story — but having the electricity grid all to themselves for decades meant that Europe’s utilities became set in their ways and although powerful, were not able to adapt quickly enough to a new kind of energy with zero toxicity and lower per unit cost.

Renewable energy, at first unguided and inexperienced, quickly found a role for itself and is now able to stand on its own feet without subsidies. Quite unlike conventional power generators.

Considering the sheer scale of the energy changes underway in Europe, conventional energy has been superceded by a superior kind of energy and with surprisingly little drama.

Related Articles

China Leads as U.S. Falls Behind in Global Smart Grid Investment

by Joshua S Hill

According to new figures from Bloomberg New Energy Finance (BNEF), global smart grid investment grew to $14.9 billion in 2013, up from $14.2 billion in 2012, and being led by China, who finished the year as the world’s largest smart grid market.

Renewable Energy. The Smart Grid. Image courtesy of Hitachi.
Renewable Energy. The Smart Grid. Image courtesy of Hitachi.

China’s place at the top comes at the expense of the United States, as the North American market continued to slow and China dollar investment into their smart grid exceeded that of the US, thanks in part to the installation of 62 million smart meters, a market which accounted for just under half of the total smart grid spending worldwide.

China’s investiture into smart grid technology amounted to $4.3 billion during 2013, with a large share going towards the installation of smart meters, bringing their national total up to 250 million. However, the country has indicated that it is aiming to extend the end-date for completing its metering program from 2015 to 2017.

On the flipside, US smart grid spending slowed during 2013, as the North American market shrunk 33% to $3.6 billion during 2013, thanks in part to the conclusion of US stimulus-funded projects.

Global investment in the smart grid increased relatively modestly last year after five years of rapid growth. But the fundamental drivers of the smart grid – greater grid reliability, further integration of renewable energy, and improved demand-side management – are stronger than ever.

Asian and European markets will drive growth through 2020, while in North America the focus will continue to shift from hardware to software as utilities look to squeeze additional value out of the vast amounts of grid data now available. — Colin McKerracher, senior energy-smart technologies analyst at Bloomberg New Energy Finance

China and the US aren’t the only markets when it comes to smart metering, but they are the largest. Bloomberg noticed several “promising signs” during 2013 for the European market, including a large metering contract in the UK, a new tender in France, and the completion of the long-awaited cost benefit analysis in Germany.

Elsewhere, Japan’s utilities are currently in the tendering and procurement stage of their smart meter deployment, while in South America, Brazil’s smart meter deployment has been delayed due to certification and financing challenges.

Bloomberg New Energy Finance sees the following developments in 2014 and beyond:

  • Asia still has years of growth ahead. Despite China’s recently announced slowdown in meter installation, China’s 5-10 year meter replacement cycle means that as this major wave of installations finishes in 2017, the first wave of replacements is expected to commence. 2014-15 will bring also an increase in distribution automation spending in China while smart grid activity in Japan, Korea, India and South East Asia will also ramp up.
  • The US is entering a second major smart grid phase: information integration. With its growing penetration rates for smart meters and distribution automation, the next phase for the US smart grid is using the new data coming in off the grid to improve areas like outage management, customer segmentation and theft detection.
  • Europe is the smart grid’s sleeping giant. Europe has installed only 55m smart meters but this is expected to rise sharply to 180m by 2020. Spain will remain as the most active market in 2014 but large-scale deployments in the UK, Germany and France will begin to ramp up in late 2015.

Keep up with all the latest cleantech news from CleanTechnica: subscribe to our newsletter.

This article, Global Smart Grid Investment Grows, China Leads, US Falls Behind, is syndicated from Clean Technica and is posted here with permission.

About the Author

Renewable Energy. Joshua S Hill.Joshua S Hill I’m a Christian, a nerd, a geek, a liberal left-winger, and believe that we’re pretty quickly directing planet-Earth into hell in a handbasket! I work as Associate Editor for the Important Media Network and write for CleanTechnica and Planetsave. I also write for Fantasy Book Review (.co.uk), Amazing Stories, the Stabley Times and Medium.   I love words with a passion, both creating them and reading them.

Europe Exits Fossil Fuel, will hit 30% Renewables by 2017

by Zachary Shahan

Following up on a Credit Suisse report stating that ~85% of US energy demand growth would come from renewables by 2025, we thought it would be good to take a look at the energy trends in Europe as well.

Actually, one of our readers pitched this idea prior to the publishing of that article, and did most of the research for this piece. I then had the pleasure of putting it together to create the primarily positive (with one notable hiccup) non-fiction story below. Enjoy!

Let’s start with the broad overview. UBS analysts in 2013 reported that utilities in Europe need to shut down 30% of their gas, coal, and oil-fed power capacity by 2017 — not necessarily to fight global warming, cut pollution, or cut fuel imports, but because the renewable energy revolution is pushing fossil fuels off the grid.

In other words, increasingly cheap and fast-growing renewables are killing fossil fuels in Europe

“Producers must close 49 gigawatts of capacity to stabilize profits at 2012 levels, analysts led by Paris-based Per Lekander wrote in an e-mailed report,” according to Rachel Morison of Bloomberg.

“That includes 24 gigawatts of ‘mainly cashflow positive capacity’ on top of the 7 gigawatts that utilities already plan to shut and an additional 18 gigawatts of closures expected to be announced.”

“The most important driver has undoubtedly been the remarkable increase of renewable capacity, and in particular solar, mainly in Germany,” Per Lekander said.

Image Credit: Nuclear Energy Agency and the Organisation for Economic Co-operation & Development, via @SamHamels
Image Credit: Nuclear Energy Agency and the Organisation for Economic Co-operation & Development, via @SamHamels

Unfortunately, the most closures are projected to be of natural gas power plants. Coal power’s big exit is projected to get rolling in 2015.

However, that’s not to say no coal power plants are being closed or kept off the grid until 2015. Back in August 2013, it was announced that a coal power plant in Finland would shut down due to its failing competitiveness.

“Finland’s largest utility, Fortum, is closing a coal-fired power plant in Inkoo, west of Helsinki,” yle wrote.

“Built in the mid-1970s, the 750 MW plant has rarely been used in recent years, only supplying backup power to the Nordic grid during periods of peak demand. It has long been a loss-maker. This is partly due to falling electricity prices in Europe, driven by Germany’s shift toward renewable energy.”

The Finnish government, in the meantime, has committed itself to transitioning to a clean, renewable energy future — only logical, right?

And in the center of much of the clean energy revolution, Germany, dozens of coal power plants have been canceled or closed in recent years.

In Germany, dozens of coal power plants have been canceled or closed in recent years, with others 'walking the plank'.
In Germany, dozens of coal power plants have been canceled or closed in recent years, with others ‘walking the plank’.

It’s true that coal power production increased in Germany in 2012, but you have to put that into some context to understand why. What many people don’t know is that many coal power plants were previously planned for Germany.

The renewable energy revolution hasn’t increased the need for coal power plants, as many misinformers would have you believe, but has resulted in the majority being dropped. Closing of nuclear power plants, combined with high natural gas prices in Europe, however, did result in a slight rise in coal power production.

Natural gas is clearly the fossil fuel getting hit hardest in Europe at the moment. As Tino Andresen and Tara Patel of Bloomberg wrote in March 2013.

“Three years ago, Germany’s largest utility spent 400 million euros ($523 million) building a natural gas-fired power station. Later this month, the company may close the plant because it’s losing so much money.”

EON’s Irsching-5, the power plant in discussion, only operated 25% of the time in 2012!

The factors for the quick death of such an expensive plant were varied, though: “As Europe’s weak economy holds back electricity demand, cheaper coal, requirements to buy renewable energy and the collapsing cost of carbon permits are undercutting gas-fired plants.”

But it’s not only happening in Germany

“Gas-fired plants are stopped three days out of four,” Gerard Mestrallet, chief executive officer of GDF Suez, France’s former gas monopoly, said at a briefing on Feb. 28.

“The thermal industry is in crisis. There is overcapacity.”

The story is essentially the same in the Netherlands, Spain, the Czech Republic, and other European countries.

In the end, the story is actually rather simple: as more renewable energy comes on line, something has to go off line.

Aside from nuclear power plants that are being shuttered due to old age and citizen demand, the big loser at the moment is natural gas. However, coal is on its way out too, just a bit more slowly. Of course, if there was a higher price on carbon, or other fossil fuel market dynamics changed, we could see those two switch places on their way out the door.

Anything more you’d like to add? Chime in below.

Keep up to date with the hottest cleantech news by subscribing to our main cleantech newsletter, or by stalking our homepage. We’re not Kim Kardashian’s Twitter feed, but I think we’re more interesting.

This article, Europe’s Fossil Fuel Exit — 30% Of Fossil Fuel Power Capacity To Close By 2017, UBS Analysts Project, is syndicated from Clean Technica and is posted here with permission.

About the Author

Zachary ShahanZachary Shahan is the director of CleanTechnica, the most popular cleantech-focused website in the world, and Planetsave, a world-leading green and science news site. He has been covering green news of various sorts since 2008, and he has been especially focused on solar energy, electric vehicles, and wind energy for the past four years or so. Aside from his work on CleanTechnica and Planetsave, he’s the Network Manager for their parent organization – Important Media – and he’s the Owner/Founder of Solar Love, EV Obsession, and Bikocity. To connect with Zach on some of your favorite social networks, go to ZacharyShahan.com and click on the relevant buttons.