By 2026, America’s Largest Grid Could Reach 30% Renewable Energy

by Silvio Marcacci

A new study reveals America’s largest grid operator could exponentially increase the amount of solar and wind electricity on its system, while lowering consumer costs and emissions, without negative effects on reliability.

JBS News Renewable Energy. PJM Interconnection footprint image via CleanTechnica
PJM Interconnection footprint image via CleanTechnica

The PJM Renewable Integration Study, prepared for PJM Interconnection by General Electric Energy Consulting, concludes renewables could provide up to 30% of the electricity across PJM’s 13-state footprint by 2026.

While PJM’s report is great news for the rapid power section decarbonization needed to slow climate change and could outline a path forward for other grids, it’s not without any negative outlook — in every modeled scenario, revenue for conventional generation sources like coal, natural gas, nuclear, or hydropower falls.

30% Renewable Energy With No Reliability Concerns

PJM commissioned the study in 2011 to better understand how the grid would be affected if the renewable energy targets of the states within its footprint were achieved or exceeded. Since PJM’s main concern is maintaining reliable and adequate power supplies and all but two of its member states have some form of renewable targets, it’s a valid concern.

GE Energy and a team of other industry experts modeled ten scenarios, ranging from maintaining the current 2% renewables penetration all the way up to obtaining 30% electricity from wind and solar. The study examined expected power demand growth, wind and solar output, required transmission upgrades, emissions, the value of wind and solar versus conventional baseload, and operational costs, among other factors.

JBS News Renewable Energy. Renewables addition potential in PJM. Image via PJM Interconnection
Renewables addition potential in PJM. Image via PJM Interconnection

And the results? In every scenario, PJM’s geographic footprint could accommodate a larger percentage of electricity supply from wind and solar without significant reliability issues, so long as adequate transmission expansion (up to $13.7 billion) happens across the system.

Wider Geographic Area, More Clean Energy

Once again, GE’s analysis shows the benefits of integrating renewables over a large geographic area. “Given the large PJM footprint…the impacts of short-term variability in wind and solar production is greatly reduced by aggregation and geographic diversity.” Put another way, if the sun stops shining or the wind stops blowing in one location, other renewables from across the system can fill the gap.

JBS News Renewable Energy. Renewable energy curtailment in PJM image via PJM Interconnection
Renewable energy curtailment in PJM. Image via PJM Interconnection

In fact, as more and more renewables were added to the PJM system in various modeling scenarios, their efficiency increased while peak demand fell. Curtailment of renewable generators (“turning off” a power system when it could run) was minimal and resulted from localized congestion instead of overall system constraints. Higher renewable generation also shifted consumer demand, with solar “significantly” reducing net demand during peak demand hours.

Fewer Fossil Fuels, Lower Costs, Less Emissions

As additional renewables come online, dirtier forms of energy were replaced. On average, 36% of added renewables displaced coal and 39% displaced natural gas, mainly on a cost basis. In fact, lower coal and natural gas generation occurs under every scenario, as “wind and solar resources are effectively price-takers and therefore replace more expensive generation resources.”

But perhaps most promising of all, every scenario created lower consumer costs across the system while cutting emissions. GE’s analysis found PJM fuel costs, variable operations and maintenance costs, and lower locational marginal prices all decline as the amount of renewables increase, with an average production cost savings of around $63 per megawatt-hour.

JBS News Renewable Energy. Renewables cost savings in PJM image via PJM Interconnection
Renewables cost savings in PJM. Image via PJM Interconnection

At the same time, carbon dioxide emissions fall drastically in every modeled scenario, ranging from a low of 12% all the way up to a high of 41% compared to a business-as-usual scenario where PJM maintains the current 2% renewables mix. The report also notes that a $40 per ton carbon tax, if instituted, would push coal generation down even further than modeled in any scenario.

JBS News Renewable Energy. CO2 emission reductions in PJM. Image via PJM Interconnection
CO2 emissions reductions in PJM. Image via PJM Interconnection

So Is The Future This Bright?

As with any long-term outlook, GE’s analysis is not without potential pitfalls. For instance, many of the PJM scenarios assume offshore wind development in Mid-Atlantic states like Maryland and Virginia along with improvements in renewable forecasting accuracy and growth in energy storage capacity.

But even considering all these challenges, the PJM renewables outlook shows that the transition to a clean energy system isn’t only possible, but it is likely to come with economic and environmental benefits.

This article, America’s Largest Grid System Could Reach 30% Renewable Energy By 2026, is syndicated from Clean Technica and is posted here with permission.

About the Author

JBS News Renewable Energy. Silvio MarcacciSilvio Marcacci is Principal at Marcacci Communications, a full-service clean energy and climate-focused public relations company based in Washington, D.C.

NREL Says Wind Energy Boosts Grid Reliability

by Silvio Marcacci

We’ve all heard the warnings about how intermittent renewables could “crash” the grid if for instance all of a sudden the wind stops blowing and grid operators are left in the lurch for power when they need it. But what if wind turbines actually improve grid reliability?

May sound far-fetched to some people, but that’s exactly what the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) reports in the new study Active Power Controls from Wind Power: Bridging the Gaps.

Previous studies have focused on wind energy forecasting as the key to balancing wind’s availability and the power grid’s demand, but this new hypothesis could vastly expand the relationship between wind turbines and the grid.

Wind farm in the snow. Image via CleanTechnica
The U.S. Department of Energy, National Renewable Energy Laboratory (NREL) says that wind power helps grid stability. Netherlans wind farm in the snow image via CleanTechnica. Image by T.W. van Urk on Shutterstock.
How Does Wind Perform With The Grid?

NREL undertook the study with the Electric Power Research Institute, an organization comprised of more than 1,000 members (most of whom are electric utilities) and the University of Colorado, so renewable energy naysayers will be hard pressed to dismiss this study as an environmentalist pipe dream.

Analysts studied multiple power system simulations, control simulations, and field tests at NREL’s National Wind Technology Center to determine how if wind could provide ancillary services in wholesale electricity markets, how wind farms affect system frequency in the Western U.S. grid system, and if using wind farms to actively provide power control to the grid affects turbine performance and structural integrity.

And the outcome of all these studies? Wind energy can not only support the grid by ramping power output up and down to enhance system reliability, but that using wind farms to provide active power control is economically beneficial, all with negligible damage to the turbines themselves.

Wind Energy, Making The Grid Stronger and Cheaper

These are potentially game-changing findings. “The study’s key takeaway is that wind energy can act in an equal or superior manner to conventional generation when providing active power control, supporting the system frequency response, and improving reliability,” said Erik Ela, NREL analyst.

Active power control helps grid operators balance system demand with generation at various times throughout the day, helping prevent power flow above or below the ideal grid frequency and involuntary load shedding – preventing both potential blackouts and turbine damage.

Making America’s grid more flexible and integrating renewables is an important imperative. Without long-overdue transmission system investments, grid operators are often forced to use high-cost (and typically fossil fuel) “peaker” power plants when demand surges or baseload power plants go offline.

Intermittency Mitigated By Recent Developments

The traditional issue facing wind energy in this context is that it can’t be “turned on” by grid operators whenever they need it. Unless the wind is blowing, turbines can’t generate electricity.

But wind has shown its chops in helping keep the lights on as extreme weather has hit the U.S. in recent memory – just consider the fact that wind energy was credited with preventing blackouts in Texas and parts of the Midwest when the polar vortex spiked power demand and forced some power plants offline.

NREL’s report also notes that almost all grid operators across the U.S., as well as many power systems outside the areas covered by regional grids, are using wind farms in dispatch procedures to manage transmission congestion at five-minute intervals – meaning it’s now a generation resource to be dispatched (for free) when needed.

“Utilities and independent system operators are all seeking strategies to better integrate wind and other variable generation into their electric systems,” said Ela. “Few have considered using wind power to support power system reliability.”

Wind energy has become one of the fastest-growing sources of electricity in America, and it’s a critical source of generation if we’re going to decarbonize our economy and slow climate change. With NREL’s report, perhaps grid operators will start to see wind energy as an energy system imperative, not just an environmental imperative.

Repost.Us - Republish This Article

This article, Forget Intermittency: NREL Says Wind Energy Can Boost Grid Reliability, is syndicated from Clean Technica and is posted here with permission.

About the Author

Silvio Marcacci Silvio Marcacci Silvio is Principal at Marcacci Communications, a full-service clean energy and climate-focused public relations company based in Washington, D.C.