Clean & Clean-burn: Renewable Energy & Natural Gas powered Electricity Grids

by John Brian Shannon

Clean and Clean-Burn: Energy, the way it should be

Planetary energy graphic courtesy of Perez and Perez.
Planetary energy graphic courtesy of Perez and Perez.

Of all the energy that is available to us, solar energy is by far the most available and the most evenly distributed energy resource on planet Earth.

Wind and Solar + natural gas = Synergy

  • Solar is available all day every day. But not at night.
  • Wind is available day and night, but it can produce variable power levels as the wind blows over the landscape.
  • Meanwhile, offshore wind turbines produce constant power, spinning at constant speeds for years at a time — except when an operator locks the blades during large storms or during the annual maintenance inspection.

Both solar power and wind power face varying levels of ‘intermittency‘ — which requires the use of ‘peaking power plants‘ or ‘load-following’ power plants — to meet total demand.

‘Catch my Fall’ — All electrical power generators are interdependent

How electricity grids use different power generators to meet total and constantly changing electricity demand.

In the case of renewable energy, the negatives include some variability in the total output of solar power or wind power generation due to temporary cloud cover or storms. At such times, natural gas-fired generation can ramp-up to cover any shortfall.

Note: This is a common and daily energy grid practice whether renewable energy is involved or not. Some gas-fired power plants are called peaking power plants which quickly ramp-up to meet output shortfalls. In fact, peaking power plants (which are almost always gas-fired) were created to meet temporary shortfalls — and were in widespread use long before renewable energy ever hit the market.

Also in the case of renewable energy, another negative is that the Sun disappears at night and solar panels stop contributing to the grid. And unless you have offshore wind turbines to make up the shortfall, onshore wind turbines may fall short of total demand. So at night, you need reliable power to make up shortfalls in primary generation.

Note: This is a common and daily energy grid practice whether renewable energy is involved or not. To cover this situation load-following power plants were designed to meet larger output shortfalls. In fact, load-following power plants were created to meet larger, daily, shortfalls — and were in widespread use long before renewable energy ever hit the market.

In the case of natural gas, the negative is that gas is subject to wild price swings, thereby making gas-fired generation very expensive. Which is why it evolved into peaking power plants, less often in the load-following role and almost never as a baseload power generator.

The other negative associated with natural gas is of course, the fact that gas turbines put out plenty of CO2. That we can deal with. Unlike coal, where the CO2 portion of the airborne emissions are almost the least of our worries — as coal emissions are loaded with toxic heavy metals, soot and other airborne toxins.

How can we deal with the CO2 emitted by gas-fired power plants?

As gas-fired peaking power plants typically fire up anywhere from a couple of dozen hours annually, to a few hours of every day (usually to cover the additional load of many air conditioners suddenly switching on during hot summer days, for example) we aren’t talking about a whole lot of CO2.

Gas-fired load-following power plants typically run for a few hours every day and to cover demand in case of primary generator (like hydro-electric or nuclear power plant) maintenance. In the case of load-following plants, much more CO2 is produced annually.

Carbon Capture and Sequestration (CCS) of gas-fired CO2 emissions via tree planting

  • Peaking power plants operate for a few hours per year. We’re not talking that much CO2.
  • Load-following power plants operate for many hours per year. More CO2.

But still, each mature tree absorbs (a low average of) 1 ton of CO2 from the atmosphere and keeps it in storage for many decades. Some trees, like the ancient Sequoia trees in California, are 3700 years old and store 26 tons of CO2 each! Certain trees native to Australia store even more carbon and live longer than Sequoia trees.

And, as anyone who has worked in the forest industry knows; Once that first planting hits maturity (in about 10 years) they will begin dropping their yearly seeds. Some trees like the cottonwood tree produce 1 million seeds annually for the life of the tree. American Elm trees set 5 million seeds per year. More trees. Always good.

It’s an easy calculation: “How many tons of CO2 did ‘ABC’ gas-fired power plant output last year?”
Therefore: “How many trees do we need to plant, in order to cover those emissions?”

Simply plant a corresponding number of trees and presto! gas-fired generation is carbon neutral

By calculating how many tons each gas-fired peaking power plant contributes and planting enough trees each year to cover their CO2 contribution, tree planting could allow gas-fired power plants to become as carbon neutral as solar power or wind power.

The total number of trees that we would need to plant in order to draw gas-fired peaking power plant CO2 emissions down to zero would be a relatively small number, per local power plant.

By calculating how many tons each gas-fired load-following power plant contributes and planting enough trees annually to cover their CO2 contribution they too could become just as carbon neutral as solar panels or wind turbines. Many more trees, but still doable and a simple solution!

The total number of trees that we would need to plant in order to draw gas-fired load-following power plant CO2 emissions down to zero would be a much larger number. But not an impossible number.

So now is the time to get kids involved as part of their scholastic environmental studies, planting trees one day per month for the entire school year.

Let the gas-fired power plant operators contribute the tree seedlings as part of their media message that the local gas-fired power plant is completely carbon neutral (ta-da!) due to the combined forces of the power plant operator, the natural carbon storage attributes of trees, and students.

Up to one million trees could be planted annually if every school (all grades) in North America contributed to the effort — thereby sequestering an amount of CO2 equal to, or greater than, all gas-fired generation on the continent.

It’s so simple when you want something to work. Hallelujah!

Baseload, peaking, and load-following power plants

Historically, natural gas was too expensive to used in baseload power plants due to the wildly fluctuating natural gas pricing and high distribution costs, but it is in wide use around the world in the peaking power plant role, and less often, in the load following power plant role.

Renewable energy power plants can be linked to ‘peaking’ or ‘load-following’ natural gas-fired power plants to assure uninterrupted power flows.

Peaking power plants operate only during times of peak demand.

In countries with widespread air conditioning, demand peaks around the middle of the afternoon, so a typical peaking power plant may start up a couple of hours before this point and shut down a couple of hours after.

However, the duration of operation for peaking plants varies from a good portion of every day to a couple dozen hours per year.

Peaking power plants include hydroelectric and gas turbine power plants. Many gas turbine power plants can be fueled with natural gas or diesel. — Wikipedia

Using natural gas for baseload power

Natural gas has some strong points in its favour. Often it is the case that we can tap into existing underground gas reservoirs by simply drilling a pipe into naturally occurring caverns in the Earth which have filled with natural gas over many millions of years. In such cases, all that is required is some minor processing to remove impurities and adding some moisture and CO2 to enable safe transport (whether by pipeline, railway, or truck) to gas-fired power plants which may be located hundreds of miles away.

It is the natural gas market pricing system that prevents gas from becoming anything other than a stopgap energy generator (read: peaking or load-following) and almost never a baseload energy generator.

Let’s look at local solutions to that problem.

Waste-to-Fuels

Several corporations are working with local governments to find innovative ways to capture landfill methane gas to produce electricity from it.

Keep in mind that the methane gas that escapes from every single landfill in the world (whether still operating or having ceased operations long ago) is 23 times more damaging to the atmosphere than CO2.

Increasingly, landfills are now installing perforated pipes underground which draw the landfill gas (so-called ‘swamp methane’) to an on-site processing facility. It is a low-grade gas which is sometimes blended with conventional natural gas to create an effective transportation or power generation fuel. Visit the Caterpillar Gas Power Solutions website here.

Waste Management is a global leader in the implementation of this technology, using its own landfills and municipal landfills across North America to produce over 550 megawatts of electricity, which is enough to power more than 440,000 homes. This amount of energy is equivalent to offsetting over 2.2 million tons of coal per year. Many more similar operations are under construction as you read this. Read the Waste Management landfill bioreactor brochure (downloadable PDF) here.

Durban, South Africa, a city of 3.5 million people, has created a huge Waste-to-Fuel landfill power plant that provides electricity to more than 5000 nearby homes.

Durban Solid Waste receives 4000 tons of trash each weekday which produces some 2600 cubic metres of gas every day of the year.

The GE Clean Cycle Waste-to-Fuel power plant arrives in 4 large shipping containers, and once connected to the gas supply pipeline it is ready to power nearby buildings and to sell surplus power to the grid.

One GE Clean Cycle Waste-to-Fuel power plant unit can generate 1 million kWh per year from waste heat and avoid more than 350 metric tons of CO2 per year, equivalent to the emissions of almost 200 cars.

Blending Conventional Natural Gas with Landfill Gas

As conventional natural gas is expensive (and much of the cost is associated with transportation of the gas over long distances) when we blend it 50/50 with landfill gas, we drop the cost of the gas by half. Thereby making blended natural gas (from two very different sources) more competitive as a power generation fuel.

By blending conventional natural gas 50/50 with landfill gas; We could produce baseload power with it — but more likely than that, we could use it to produce reasonably-priced load-following or peaking power to augment existing and future renewable energy power plants — rather than allow all that raw methane from landfills to escape into the atmosphere.

Best of Both Worlds — Renewable Energy and Natural Gas

Partnering renewable energy with natural gas in this way allows each type of power generator to work to their best strength — while countering negatives associated with either renewable energy or natural gas.

Renewable power generation and lower cost natural gas can work together to make coal-fired electrical power generation obsolete and accelerate progress toward our clean air goals.

Related Articles:

new lens scenario
Royal Dutch Shell New Lens Scenarios
Our latest scenarios explore two possible versions of the future seen through fresh “lenses” to take us to the year 2100.

BP Energy Outlook 2035
BP Energy Outlook 2035
This edition updates our view of the likely path of global energy markets to 2035.

 

The ‘Variability’ of Renewable and Non-renewable energy

The ‘Variability’ of Renewable and Non-renewable energy | 29/05/14
by John Brian Shannon John Brian Shannon

The ongoing debate about the effects of the Variability of Renewable Energy on national electrical grids

Merit Order ranking control room
Most utility companies have Merit Order ranking control rooms similar to this one where decisions are made about which power producer will contribute to the grid in real time. Microprocessors make the instant decisions, while humans are present to oversee operations and plan ahead.

Solar Variability

Some people argue that solar photovoltaic (solar panels) produce ‘variable’ electricity flows — and they assume that makes solar unsuitable for use in our modern electrical grid system.

And it’s true, the Sun doesn’t shine at night. Also, if you are discussing only one solar panel installation in one farmer’s field, then yes, there is the variability of intermittent cloud cover to consider, which may temporarily lower the output of that particular solar installation.

But when grid-connected solar arrays are installed over vast areas in a large state such as Texas or throughout the Northeastern U.S.A. for example, it all balances out and no one goes without power as solar panels produce prodigious amounts of electricity during the high-demand daytime hours. If it’s cloudy in one location thereby lowering solar panel outputs, then it is likely to be sunny in 100 other solar locations within that large state or region.

Therefore, solar ‘variability’ disappears with many, widely scattered installations and with interconnection to the grid. So much for that accusation.

NOTE: The marginal ranking (which reflects the wholesale kWh electricity price) for solar is (0) and that ranking never varies. (More on this later)

Wind Variability

The situation with wind power is essentially the same, One major difference though; In many parts of the world the wind tends to blow at its most constant rate at night, which helps to add power to the grid while the Sun is asleep.

In fact, complementary installations of solar and wind help to balance each other through the day/night cycle — and through the changing seasons. There is even an optimum ratio between the number of solar panels and the number of wind turbines to better complement the other, but I won’t bore you with the details.

NOTE: The marginal ranking for wind is (0) and that ranking never varies.

Natural Gas Variability

What? Natural gas is not variable!

Oh really? Over the course of the past 60 years, how has the natural gas price per gigajoule changed? Got you there. The natural gas price has increased by orders of magnitude and wild price fluctuations are quite common.

OK, that’s not ‘output variability’ but it is a variable factor with regard to energy pricing. And that’s a variable that actually matters to consumers.

Natural gas prices have swung wildly over the years forcing utilities to peg their rates to the highest expected natural gas rate. No wonder investors love natural gas!

So there is ‘supply variability’ and wholesale ‘price variability’ with natural gas, which is why it is the last choice for utility companies as they meet the peak demand hours of the day. Gas is a good but expensive option, however, it comes with its own variability baggage.

We won’t even talk about the associated CO2 cost to the environment. (OK, it’s about $40 per tonne of CO2 emitted)

Coal variability

Not to the same degree as natural gas, but coal also faces price swings and potential supply disruptions — again forcing utility companies to set their rates against unforeseeable labour strikes at a mine, a railway, or shipping line — and against coal mine accidents that can shut down a mine for weeks, or market-generated price spikes.

These things are impossible to foresee, so this ‘averaging up’ of the price results in higher energy bills for consumers and better returns for investors.

Yes, there is variability in coal supply, in coal supply lines, in coal power plant maintenance cycles which can have a plant offline for weeks, and coal market pricing. These things can affect total annual output, and is yet another kind of ‘variability’. (Again, that doesn’t factor-in the other costs to society such as increased healthcare costs from burning coal which releases tonnes of airborne heavy metals, soot, and nasty pollutants besides CO2 which some estimates put at $40-60 per tonne emitted — in addition to the environmental cost of $40 per tonne for plain old CO2 emissions)

NOTE: Should we talk here about how much water coal plants use every year? More than all the other energy producers put together, and then some.

Hydro power variability

What? Hydro power is not variable!

Oh yes it is. Nowadays thanks to global warming, many hydro dams in the U.S. can barely keep water in the reservoir from August through November. They cannot produce their full rated power in a drought, in late summer, during maintenance, or during earthquake swarms. Just sayin’ hi California!

An impressive-looking body of water behind the dam is meaningless when the water level isn’t high enough to ‘spill over the dam’. If the water level isn’t high enough to spin the turbines then all that water is just for show. Take a picture!

In 1984, the Hoover Dam on the Colorado River generated enough power on its own to provide electricity for 700,000 homes because the water level of Lake Mead behind the dam was at its highest point on record.

But since 1999, water levels have dropped significantly, and Hoover Dam produces electricity for only about 350,000 homes. — CleanTechnica

And then there is this problem; Global warming and resultant drought conditions mean that some dams are essentially finished as power producing dams for the foreseeable future.

Again, we have output variability; But this time it is; 1) lower power output and variable output due to reduced reservoir levels caused by anthropogenic drought and 2) the months of year that hydro dams cannot produce their full rated power.

Price variability: This is what Merit Order ranking is about

Merit Order ranking is a system used by most electric utilities to allow different types of electrical power producers to add power to the electric grid in real time. Thanks to a computerized grid, this occurs on a minute-by-minute basis every day of the year.

In the German example, electricity rates drop by up to 40% during the hours in which solar or wind are active, and this is what Merit Order ranking is all about; Using the cheapest available electricity source FIRST — and then filling the gaps with more expensive electrical power generation.

Solar and wind electricity are rated at 0 (default) on the Merit Order scale making them the default choice for utility companies when the Sun is shining, or when the wind is blowing, or both.

Why? No fuel cost. That’s the difference. And bonus, no environmental or healthcare hazards with solar and wind either.

Once all of the available solar and wind Merit Order ranking (0) capacity is brought online by the utility company, then (1) nuclear, (2) coal, and (3) natural gas (in that order) are ramped up as required to match demand, according to the marginal cost of each type of energy. (German Merit Order rankings)

NOTE: In the U.S. the normal Merit Order rankings are; default (0) for solar and wind, (1) coal, (2) nuclear, and (3) natural gas, although this order can change in some parts of the United States and around the world. Merit Order is based on cost per kWh only and different regions of the country have different fuel costs.

(The one cost that is never factored-in to the kWh price is the cost of disposal for nuclear ‘spent fuel’ and for good reason, but that’s a discussion for a different day)

The Fraunhofer Institute found – as far back as 2007 – that as a result of the Merit Order ranking system – solar power had reduced the price of electricity on the EPEX exchange by 10 percent on the average, with reductions peaking at up to 40 percent in the early afternoon when the most solar power is generated.

Here’s how the Merit Order works

All available sources of electrical generation are ranked by their marginal costs, from cheapest to most expensive, with the cheapest having the most merit.

The marginal cost is the cost of producing one additional unit of electricity. Electricity sources with a higher fuel cost have a higher marginal cost. If one unit of fuel costs $X, 2 units will cost $X times 2. This ranking is called the order of merit of each source, or the Merit Order.

Using Merit Order to decide means the source with the lowest marginal cost must be used first when there is a need to add more power to the grid – like during sunny afternoon peak hours.

Using the lowest marginal costs first was designed so that cheaper fuels were used first to save consumers money. In the German market, this was nuclear, then coal, then natural gas.

But 2 hours of sunshine cost no more than 1 of sunshine: therefore it has a lower marginal cost than coal – or any source with any fuel cost whatsoever.

So, under the Merit Order ranking of relative marginal costs, devised before there was this much fuel-free energy available on the grid, solar always has the lowest marginal cost during these peaks because two units of solar is no more expensive than one. — Susan Kraemer

It’s as simple as this; With no fuel cost, solar and wind cost less.

Although solar and wind are expensive to construct initially (but not as expensive as large hydro-electric dams or large nuclear power plants!) there are no ongoing fuel costs, nor fuel transportation costs, nor fuel supply disruptions, nor lack of rainfalls, to factor into the final retail electricity price.

As solar panel and wind turbine prices continue to drop thereby encouraging more solar and wind installations, we will hear more about Merit Order ranking and less about variability. And that’s as it should be, as all types of grid energy face at least one variability factor or more.

Only solar, wind, hydro-electric, and nuclear have a predictable kWh price every day of the year. Coal, natural gas, and bunker fuel do not. And that’s everything in the utility business.

Although utility companies were slower than consumers to embrace renewable energy, some are now seeing potential benefit for their business and henceforth things will begin to change. So we can say goodbye to the chatter about renewable energy variability and utility companies can eventually say goodbye fuel-related price spikes.

Buckle up, because big changes are coming over the next few years to the existing utility model that will benefit consumers and the environment alike.

Why are Environmentalists excited about the Natural Gas boom?

Why are Environmentalists excited about the Natural Gas boom? | 18/03/13
by John Brian Shannon John Brian Shannon

Mirror, mirror, on the wall, which is the cleanest fossil fuel of all?

You guessed it! Natural gas is the cleanest fossil fuel – and by significant margins as data from the Environmental Protection Agency illustrates in the chart below.

Fossil Fuel Emission Levels in pounds per billion Btu of energy input. Source: EPA Natural Gas Issues and Trends 1998
Fossil Fuel Emission Levels in pounds per billion Btu of energy input. Source: EPA Natural Gas Issues and Trends 1998

Natural gas, as the cleanest of the fossil fuels, can be used in many ways to help reduce the emission of pollutants into the atmosphere.

Burning natural gas in the place of other fossil fuels emits fewer harmful pollutants, and an increased reliance on natural gas can potentially reduce the emissions of many of the most harmful pollutants. — naturalgas.org

After investigating the externalities associated with conventional sources of energy and cognizant of their commitments towards clean air, many nations have begun to embrace natural gas as a stepping stone towards a cleaner energy future.

In the U.S.A., as far back as 2003 when coal supplied more than 50% of America’s electrical power, coal-fired plants have been retired more quickly than new ones have come online. By 2012, coal supplied only 38% of U.S. electricity.

Nine gigawatts of U.S. coal-fired power generation was shut-down in 2012 alone, and replaced by an almost equal amount of natural gas power generation. Emission levels from those comparably-sized replacement natural gas power plants are less than half of those retired coal-fired plants!

Many more U.S. coal-fired power plants are scheduled for complete shutdown, or conversion to natural gas over the next few years totalling 35 GigaWatts (GW) according to the experts.

Chart courtesy of the U.S. Energy Information Administration — shows carbon emissions dropping as a result of switching from coal to natural gas,  2005-2012.

U.S. Carbon Emissions by Sector. Source: U.S. Energy Information Administration
U.S. Carbon Emissions by Sector. Source: U.S. Energy Information Administration

Carbon emissions of all end-use Sectors have decreased since 2005 in the United States.

The largest reductions appear to be due to the Electric Power and Transportation sector’s emissions, followed by the Industrial, Residential and Commercial sectors.

[Of all sectors] “the largest reduction to carbon emissions is due to coal-to-natural gas ‘fuels switching’ and construction of higher efficiency power plants. 

Expansion of renewable power, overwhelmingly due to expanded wind power, has been the second largest factor to reduced Power Sector carbon emissions.” – theenergycollective.com

Many expert studies show CO2 emissions dropping as a result of the combined effects of many countries switching from coal to natural gas and/or renewables, 1990-2100.

Chart depicts probable CO2 levels, depending on the choices we make. Image courtesy of Royal Dutch Shell 'New Lens Scenarios'
Chart depicts probable CO2 levels, depending on the energy choices we make. Image courtesy of Royal Dutch Shell ‘New Lens Scenarios’

The change-up to renewable energy will vary by country as OECD nations continue to take the lead in renewable energy between now and 2100. Even so, total worldwide emissions will drop dramatically and the switch from coal to natural gas is one big step towards a cleaner environment.

Related Articles:

Royal Dutch Shell Report Spells Big Changes for Energy

by John Brian Shannon

Royal Dutch Shell has published a startling report in which it lays out it’s future view and it has detailed huge global implications for citizens, governments and the energy industry.

Shell’s New Lense Scenarios (policy paper) paints a picture of a new order among the different kinds of energy and how energy use will change between now and 2100.

Two different scenarios are discussed and named. The two, named ‘Mountains’ and ‘Oceans’ take different views of the many factors likely to affect the industry over the next 87 years,  but there is more consensus than disagreement between the two views.

The boom in natural gas figures prominently in both scenarios with natural gas dramatically ramping-up to become the number one kind of energy in the world by 2030.

“In 2030, natural gas becomes the largest global primary energy source, ending a 70-year reign for oil.” — NLS report

Due to enhanced Carbon Capture and Storage, clean combustion technology and the use of CO2 gas for industrial processes by 2100, Shell sees global emissions of carbon dioxide dropping by 2100, to nearly zero.

A quote from the report’s main authour Jeremy Bentham, speaks volumes about the anticipated level of demand for natural gas; “The underlying pent-up demand for gas is very strong…we see it being sucked up, every molecule.”

By 2060, the report has PV solar power moving into number one position to provide at least 38 percent of global energy supply — well up from today’s distant ranking of 13th place. See; Shell Sees Solar As The Biggest Energy Source After Exiting It in 2009.

Due to enhanced Carbon Capture and Storage, clean combustion technology and the use of CO2 gas for industrial processes by 2100, Shell sees “global emissions of carbon dioxide dropping to near zero by 2100”.

By 2100, energy from oil will account for only 10 percent of worldwide energy use and natural gas will account for just 7.5 percent of the global total, Shell said.

What might lie ahead 50 years from now… or even in 2100? We consider two possible scenarios of the future, taking a number of pressing global trends and issues and using them as “lenses” through which to view the world.

The scenarios provide a detailed analysis of current trends and their likely trajectory into the future. They dive into the implications for the pace of global economic development, the types of energy we use to power our lives and the growth in greenhouse gas emissions.

The scenarios also highlight areas of public policy likely to have the greatest influence on the development of cleaner fuels, improvements in energy efficiency and on moderating greenhouse gas emissions.

Mountains

The first scenario, labelled “mountains”, sees a strong role for government and the introduction of firm and far-reaching policy measures. These help to develop more compact cities and transform the global transport network. New policies unlock plentiful natural gas resources – making it the largest global energy source by the 2030s – and accelerate carbon capture and storage technology, supporting a cleaner energy system.

Oceans

The second scenario, which we call “oceans”, describes a more prosperous and volatile world. Energy demand surges, due to strong economic growth. Power is more widely distributed and governments take longer to agree major decisions. Market forces rather than policies shape the energy system: oil and coal remain part of the energy mix but renewable energy also grows. By the 2060s solar becomes the world’s largest energy source. – Shell

Download New Lens Scenarios PDF (PDF, 9 MB) – opens in new window

After selling off it’s global solar holdings in 2009, except for those located in Japan, Shell, having taken a long, studious look into the future, has since embraced PV solar as never before and is presently buying back it’s own shares at a brisk pace.

Related articles
JOHN BRIAN SHANNON

To follow John Brian Shannon on social media – place a check-mark beside your choice of Facebook, Twitter or LinkedIn: FullyFollowMe/johnbrianshannon

Royal Dutch Shell Drops Two ‘Bombs’ in One Week

Royal Dutch Shell Drops Two ‘Bombs’ in One Week | 01/03/13
by John Brian Shannon John Brian Shannon

First came the announcement this week by Shell senior executives that oil extraction in the Arctic would be postponed for the second year in a row, and second is yesterday’s announcement foreshadowing the company’s plan for the future, Shell Sees Solar As The Biggest Energy Source After Exiting It in 2009.

The New Lens Scenarios Europe Shell report depicts two different energy policy scenarios, predicts that “photovoltaic panels will be the main power source by 2060 or 2070”  (depending on which scenario) and “lower costs and state support will boost solar to about 600 gigawatts in 2035” – worldwide totals.

What might lie ahead 50 years from now… or even in 2100? We consider two possible scenarios of the future, taking a number of pressing global trends and issues and using them as “lenses” through which to view the world.

The scenarios provide a detailed analysis of current trends and their likely trajectory into the future. They dive into the implications for the pace of global economic development, the types of energy we use to power our lives and the growth in greenhouse gas emissions.

The scenarios also highlight areas of public policy likely to have the greatest influence on the development of cleaner fuels, improvements in energy efficiency and on moderating greenhouse gas emissions.

Mountains

The first scenario, labelled “mountains”, sees a strong role for government and the introduction of firm and far-reaching policy measures. These help to develop more compact cities and transform the global transport network. New policies unlock plentiful natural gas resources – making it the largest global energy source by the 2030s – and accelerate carbon capture and storage technology, supporting a cleaner energy system.

Oceans

The second scenario, which we call “oceans”, describes a more prosperous and volatile world. Energy demand surges, due to strong economic growth. Power is more widely distributed and governments take longer to agree major decisions. Market forces rather than policies shape the energy system: oil and coal remain part of the energy mix but renewable energy also grows. By the 2060s solar becomes the world’s largest energy source. – Shell

According to information compiled from Bloomberg New Energy Finance and the International Energy Agency, solar photovoltaic (PV) capacity has grown to about 102 gigawatts worldwide in 2012 – which is up from 1 gigawatt globally in 2000.

Since year 2000, an average of 10 gigawatts of PV solar, per year, has been very unevenly added to the world’s electrical grids, but if PV solar installations were to grow at the same rate as the 2000-2012 timeframe, just 450 gigawatts of PV solar would be installed by 2035 — not the 600 gigawatts predicted by the report. The growth rate for PV solar has been astonishing for a new kind of energy for utility companies — and additionally so, considering it is battling with the big boys of the energy world, oil & gas, coal and nuclear. Regardless of past challenges, strong growth in PV solar is forecast until 2100.

All of this means that PV solar is set to grow dramatically between now and 2035, let alone by 2070.

Peter Endig/dpa via AP Images
Shell Solar GmbH 2004 | World’s then-largest solar power plant in Espenhain, Germany | Image credit courtesy: Peter Endig/dpa via AP Images

The report has PV solar power moving to number one position to provide at least 38% of worldwide energy supply (well up from today’s ranking of 13th place) to become the predominant kind of energy by 2100.

By 2100, energy from oil will account for only 10% of worldwide energy use and natural gas will account for just 7.5% of the worldwide total, Shell said.

Due to enhanced Carbon Capture and Storage, clean combustion technology and the use of CO2 gas for industrial processes by 2100, Shell sees “global emissions of carbon dioxide dropping to near zero by 2100”.

As all of the above plays out, natural gas demand is expected to surpass the historic demands seen for any other kind of fuel and the quote from the report’s main authour Jeremy Bentham, speaks volumes about the anticipated level of demand for the gas.

“The underlying pent-up demand for gas is very strong…we see it being sucked up, every molecule.”– Jeremy Bentham

The overall demand for energy will double in the next 50 years due to population growth and increases in living standards, and natural gas will eventually enjoy the highest level of fuel demand in history. But by 2100, the world will mainly run on PV solar, while other kinds of energy will contribute small percentages to the overall global energy mix.

It now appears that Shell would rather ‘switch than fight’ the move to PV solar. It is likely to be the first of many such switches in the global energy industry.

Related articles