NCCETC Releases Guide to Going Solar in America’s 50 Largest Cities

NCCETC Releases Residential Customer Guide to Going Solar in America’s 50 Largest Cities | 13/01/15
by North Carolina Clean Energy Technology Center

RALEIGH, NC (January 13, 2015) – Today, as part of the U.S. Department of Energy’s SunShot Solar Outreach Partnership (SolarOPs), the N.C. Clean Energy Technology Center (formerly the N.C. Solar Center) announced the release of the second report in its Going Solar in America series:

Going Solar in America: A Guide for Homeowners Considering Solar PV in America’s 50 Largest Cities

The first Going Solar in America report, released last week, ranked America’s 50 largest cities by the financial value rooftop solar offers residential customers. According to the authors’ calculations, a financed solar PV system can be a better investment than the S&P 500 in 46 of the 50 cities.

Going Solar in America report, ranks America’s 50 largest cities by the financial value rooftop solar offers residential customers. Image courtesy of NC Clean Energy Technology Center, N.C. State University.
Going Solar in America report, ranks America’s 50 largest cities by the financial value rooftop solar offers residential customers. Image courtesy of NC Clean Energy Technology Center, N.C. State University.

The second report, released today, provides actionable information to homeowners as a follow-up to these rankings. This customer-facing guide includes descriptions of the policy and incentive options available to homeowners considering solar and information on how to get started. Among topics addressed are solar PV technology, financing options (loans, leases and power purchase agreements), and net metering and “value of solar” tariffs.

Many Americans are not aware of the degree to which solar costs have declined, and the emerging value that solar offers as a savings and investment opportunity, so the Going Solar in America reports are intended to build support and awareness by providing estimated values for each of America’s largest cities. Contrary to popular belief, rooftop solar is already cheaper than utility rates in 42 of the 50 cities, and this is set to increase as the cost of solar continues to decline and utility rates increase.

“We wanted to first draw attention to the financial value that solar offers today and then have a resource available to assist homeowners who are interested in taking the next step,” said Autumn Proudlove, co-author of the Going Solar in America reports.

Another reason why many homeowners are unaware of solar PV’s value is due to the fact that most people do not have a point of reference for understanding how much it costs them. This report provides customers with a common point of reference most Americans can understand well – the cost of a new (and best-selling) car.

“It may surprise many homeowners, but the fact is, the upfront cost of a typical size solar PV system, even without various policies, incentives, tax credits, and other low-cost financing options, is about the same as the upfront cost of a 2015 Toyota Corolla™ in all regions of the country,” said Jim Kennerly, the lead author and project manager for the Going Solar in America reports.

“Given that a car’s upfront cost does not include ongoing gas and maintenance costs, it really shows that going solar right now is a great financial value, no matter who you are, or where you live.”

Below is a table from the report that compares the regional price of solar (generously provided to the Center by EnergySage, an online solar marketplace), with the average prices paid for a 2015 Toyota Corolla™ (courtesy of U.S. News and World Report):

Going solar
Cost comparison between a 5kW solar PV system and a new Toyota Corolla (2014). Image courtesy of North Carolina Clean Energy Technology Center, N.C. State University.

 

To obtain a full copy of the report and rankings, please click here.

For a copy of the Technical Appendix to this report and to “Going Solar in America: Ranking Solar’s Value to Consumers in Americas Largest Cities” (released last week), please click here.
 

About the N.C. Clean Energy Technology Center

The N.C. Clean Energy Technology Center, as part of the College of Engineering at North Carolina State University, advances a sustainable energy economy by educating, demonstrating and providing support for clean energy technologies, practices and policies. It serves as a resource for innovative, green energy technologies through technology demonstration, technical assistance, outreach and training.

For more information about the N.C. Clean Energy Technology Center, visit: http://www.nccleantech.ncsu.edu.

Twitter: @NCCleanTech

Republished at JBS News with the kind permission of the report’s authours

Wall Street Suddenly Hot On Solar Stocks

by Tina Casey.

Over the weekend, the New York Times noted that the solar power “craze” is partly responsible for Wall Street’s recent good times. The Times used the example of solar giant SolarCity, which has seen a sevenfold increase in its share price to $59.27 since it went public, but this could just be starters for the US solar industry. An international research team based at North Carolina State University has come up with a simple way to increase the efficiency of organic solar cells by more than 30 percent, leading to lower costs and a much bigger market.

That’s great news for companies like SolarCity. The company – another brainchild of Tesla creator Elon Musk – packages and installs solar systems, so it’s not subject to the kind of downward global pricing pressures that doomed US manufacturers like Solyndra.

In fact, down works good for SolarCity’s business model. Solar cells account for about half the cost of a fully installed and connected solar system, so a major drop in the cost of solar cells will have a significant impact on overall costs. That gives SolarCity and other solar packagers another opportunity to offer their systems at more competitive prices, and nudge conventional fuels out of the market.

Solar cell efficiency breakthrough courtesy of NCSU.

Solar cell efficiency breakthrough courtesy of NCSU.

A New Solar Cell Efficiency Breakthrough

With that in mind, let’s take a look at that NCSU solar cell efficiency breakthrough, which was just published in the journal Advanced Materials.

The research applies to organic solar cells, which refers to a relatively new class of solar cells based on polymers (loosely speaking, plastic). Organic solar cells are less efficient than silicon, which is still the gold standard, but they make up for it with the potential for a broader range of applications and a low cost manufacturing process.

The key to the breakthrough is the creation of a new low cost polymer by NCSU’s partner in the project, the Chinese Academy of Sciences. Called PBT-OP, the new polymer is made from two readily available monomers and a third monomer that can be synthesized with relative ease (monomers are identical molecules that can be bonded together into long chains as polymers).

The new polymer skips over a key hurdle for lowering the cost of organic solar cells, which is the use of fluorine. Typically, in organic solar cells a fluorine atom is needed in the polymer’s “molecular backbone” in order to increase efficiency, but that is a complicated processes and it introduces significant manufacturing costs.

PBT-OP has the fluorine advantage without the fluorine. To get a handle on that, all you need to know is that organic solar cells consist of an electron acceptor material and an electron donor material, each with its own molecular orbit.

The trick is to find the ideal difference between the highest occupied molecular orbit of the acceptor and lowest unoccupied molecular orbit of the polymer.

Once you get that nailed down, what you’ve done is to create a kind of super-efficient electrical highway, in which excitons (the energy particles created when a solar cell absorbs light) travel as quickly as possible within the interface of the donor and acceptor domains. That means you minimize the loss of energy that occurs in a conventional organic solar cell.

NCSU physicist Harald Ade breaks it down:

The possible drawback in changing the molecular structure of these materials is that you may enhance one aspect of the solar cell but inadvertently create unintended consequences in devices that defeat the initial intent. In this case, we have found a chemically easy way to change the electronic structure and enhance device efficiency by capturing a lager fraction of the light’s energy, without changing the material’s ability to absorb, create and transport energy.

Thank you, Harald. Now let’s also thank the U.S. Department of Energy, which funded the research project in partnership with the Chinese Ministry of Science and Technology.

SolarCity And Tesla

Now let’s get back to that SolarCity/Tesla connection. Tesla Motors co-founder and CEO Elon Musk is best known for his innovation in the electric vehicle field, which seamlessly marries EV charging stations with onboard technology in the form of Tesla Motors’ Supercharger network, and he is also the Chairman of SolarCity.

Tesla has been introducing Supercharger stations powered at least partly by on site solar installations in the form of canopies, so it’s no surprise that SolarCity is providing the installations.

SolarCity is also the force behind solar-powered home EV charging stations and SolarStrong, which involves $1 billion worth of rooftop solar panels for military housing. Los Angeles Air Force Base and Fort Bliss are two examples, with Los Angeles being particularly interesting because the base has also been introducing electric vehicles.

Given SolarCity’s track record with thin-film solar cells and the solar/mobility connection with Tesla Motors we’re thinking that it won’t be long before both companies cook up new applications for organic solar cells as the cost of the technology continues to drop.

Follow me on Twitter and Google+.

Psst, wanna keep up with all the latest clean tech news from CleanTechnica? Subscribe to our newsletter.

Repost.Us - Republish This Article

This article, Wall Street Suddenly Loves Solar, Just In Time For New Solar Cell Efficiency Breakthrough, is syndicated from Clean Technica and is posted here with permission.

About the Author

Tina CaseyTina Casey specializes in military and corporate sustainability, advanced technology, emerging materials, biofuels, and water and wastewater issues. Tina’s articles are reposted frequently on Reuters, Scientific American, and many other sites. You can also follow her on Twitter @TinaMCasey and Google+.

Follow JBS News Renewable Energy on Facebook and on Twitter