Creating Jobs via Renewable Energy Adoption

Creating Jobs via Renewable Energy Adoption | 07/02/15
by John Brian Shannon John Brian Shannon

Adding new jobs to the economy is always a good thing

In good times or bad, adding more jobs to the economy always equates to higher GDP, lower debt-to-GDP levels, lower unemployment insurance expenditures and higher revenues for governments from income tax and sales tax.

There are no examples where adding net jobs to an economy has resulted in a net loss to the economy

It’s positive for individuals too. Higher employment levels generally lead to higher incomes, small and large businesses notice increased revenue and there is always the chance that companies may begin to expand their facilities and hire more staff to handle increased sales.

Which is why the case to add more renewable energy is so compelling

IRENA Renewable Energy jobs infographic - Global
Global jobs created by the Renewable Energy industry. Image courtesy of IRENA.

Over decades of time, mature industries have figured out ways to increase output with fewer employees.

In the Top 10 on the mature industry list, must certainly be hydro-electric power plants, followed by nuclear power plants and gas-fired power plants. There we have astronomical installation costs and employment numbers — but once construction of the power plant is completed only very low staffing levels remain to operate the power plant.

Which is very unlike the case with renewable energy. Why? Because once a multi-billion dollar hydro-electric dam is built, it’s built. You don’t need to build thousands of them per day.

It’s the same with multi-billion dollar nuclear power plants — all you need after the construction phase ends are a small number of highly trained people to monitor the various systems. And some security people. That’s it.

With solar panels, a factory must produce 1000 per day (or more, in the case of larger factories) every weekday. Suitable markets must be found, factories must be built/leased, production floors must be built, materials sourced, and the panels themselves must be designed and engineered, assembled, packed, shipped and accounted for. Accountants do what they must do, marketing people manage a steady train of media events, trade shows and advertising programs, and on and on it goes — and all of it is a part of the solar industry. That activity creates work for thousands of people, every workday of the year. (And that short description doesn’t begin to cover it)

Then there are the solar panel installers, the sales teams/estimators, and the companies that build the inverter systems, which is a whole other value chain.

The wind power industry can also make high employment/lower power plant cost claims — although wind turbines average about $1 million dollars each — as opposed to solar panels which mostly range from $10 each to $400 each, depending on their size and composition.

Renewable energy is hugely labour-intensive and many thousands of permanent jobs are created — quite the opposite of conventional power generation

It is worth commenting that 2014 renewable energy employment numbers (once they become available) will show a significant improvement over 2013 numbers.

The entire industry is surging forward unequally, but renewable energy growth in some nations is trending upwards like the Millennium Falcon trends upwards.

Below is a breakdown graphic showing the labour intensity of the various types of renewable energy.

Globally, 6.5 million jobs were created in 2013 from renewable energy.
Globally, 6.5 million jobs were created in 2013 from renewable energy. Image courtesy of IRENA.

We can also look at a breakdown graphic of jobs per MW of electricity produced where we see that coal, nuclear, and oil & gas require very few humans per MW.

Potential jobs by MegaWatt (MW) by energy type. Image courtesy of IRENA.
Potential jobs by MegaWatt (MW) by energy type. Image courtesy of IRENA.

There’s no doubt that global energy demand is growing, not only in the developed world, but in the developing world as well.

Each kind of energy (non-renewable and renewable energy) has it’s own pros and cons.

One of them, is that non-renewable energy requires far fewer humans over the lifetime of the power plant.

Renewable energy on the other hand, is a rapidly-growing manufacturing, installation, and marketing industry that requires evermore blue collar and white collar employees.

And now that solar power, wind power, and biomass power have reached — or are within months of matching (per kWh) price parity with non-renewable power plants — the question becomes;

Do we want to employ 1.3 persons full-time per MW, or do we want to employ up to 24 people full-time per MW?

For comparison purposes, the typical coal, gas, or nuclear power plant can supply 1000 MW (or 1 GigaWatt) of electrical generation capacity, while the average wind turbine can supply 1 MW each.

The average 1 MW wind turbine costs about $1 million apiece, so to get 1 GW of electrical generation capacity, you need to install 1000 of them (1000 x $1 million each = $1 billion total) and the installation and connection to the grid of that many turbines might take up to 24 months.

Each 1 GW installation of coal, gas, or nuclear power, costs well over $1 billion and can take up to 15 years to construction completion.

For example, the 2.4 GW nuclear power plant under construction in Vogtle, Georgia was originally planned to cost $14 billion, but due to construction and regulatory delays (and now lawsuits between the principals involved) it may cost significantly more than that and the completion date has been extended by months, or even years.

At this point, the total cost may exceed $17 billion and it may take an extra year to complete — for a total of 2.4 GW of installed capacity over 11 years of construction and delays, at a total cost of $7.08 billion per GigaWatt. It won’t get any better than that, but it may get much worse.

The 10-year construction plan is already behind schedule by 14-months, and now faces an additional (up to) 18-month delay.

PennEnergy: Southern Co. might spend [another] $8B on nuclear plant
ABC News: Builder Projects 18-Month Delay for Nuclear Plant in Georgia

One point about Plant Vogtle (the official name of the plant) is that the two 1200 MW (1.2 GW) reactors are of the latest GE/Toshiba AP-1000 design, noted for their passive safety systems and additional safety redundancies built into the power plant. If you’re going to build a nuclear power plant it might as well be the safest one.

As new capacity is added to global electrical grids, more of it is renewable energy

More utility companies are adding new renewable energy capacity as opposed to adding new non-renewable energy capacity due to faster installation time frames, fewer regulatory delays, the lack of fuel supply concerns going forward, and total installation cost per GigaWatt.

In 2013, of the 207 GW added to the world’s electrical grids — renewable energy accounted for 120 GW of new installations, while 87 GW accounted for non-renewable energy.

Once the 2014 numbers are released to the public, the renewable energy statistic will have improved over 2013’s numbers. And 2016 should easily surpass the 70/30 metric.

It’s easy to visualize this in the chart below.

Global generation capacity additions to 2013 - renewables vs. non-renewables. Image courtesy of IRENA.
Global generation capacity additions – renewables vs. non-renewables. Image courtesy of IRENA.

As renewable energy displaces non-renewable energy additions to the grid — remember that renewable energy gets only 1/4 of the subsidies that fossil fuel energy gets!

See: Energy Subsidies: The Case for a Level Playing Field

Imagine if renewable power generation got the same subsidies as non-renewable energy power generation

In practical terms, it would mean that 100% of all new power generation would be renewable energy.

Also, the renewable energy manufacturing sector would need to accelerate production to meet demand — meaning many hundreds of thousands of permanent jobs would be created immediately after the levelized subsidy was announced.

Between 2017-2019 — and even with the higher subsidies enjoyed by coal, nuclear, and oil & gas — it will cost less to install new renewable energy power plants than to install new non-renewable energy power plants.

Germany is one of the countries leading the transition to renewable energy

Due to German public pressure in the aftermath of the Fukushima-Daiichi incident in March 2011, Germany shut down nearly half of their nuclear power plants and were forced to accelerate their transition timeline to renewable energy.

This unexpected development created additional costs for Germany, but regardless, their Energiewende program is still a stunning renewable energy success story.

Although progress has slowed from the frenetic pace of 2011-2013, Germany is very much a world leader in the transition to renewable energy.

Renewable energies were the number 1 source of power production for the first time ever. [In Germany]

Renewables gained slightly in 2014 and now comprise 27.3 percent of domestic power consumption.

They have now permanently displaced lignite [brown coal] as the top source of power in the electricity mix. — The Energiewende in the Power Sector : State of Affairs 2014 (downloadable PDF)

Here is a nice chart, courtesy of our friends at the Fraunhofer Institute in Germany.

How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.
How goes the Energiewende, Germany? Es geht gut! Image courtesy of the Fraunhofer Institute.

There is no doubt that the world will transition to renewable energy, and even major oil companies like Shell and BP are in agreement that by the year 2100, almost 95% of all energy demand will be met by renewable energy.

In one scenario, Shell says that by 2060 the largest energy provider will be solar power.

How quickly that energy transition will occur, is what the present conversation is all about

Increasingly, the conversation centres around matching renewable energy subsidies with the (4x higher) subsidies enjoyed by coal, nuclear, and oil & gas power generation.

So get ready to breathe fresh air, because change is coming!

Related Articles:

Thank you to our friends at IRENA and at Fraunhofer Institute for their valuable graphics!

WWF says India could reach 100% Renewables by 2050

by Guest Contributor Emma Fitzpatrick

Originally published on RenewEconomy

When the world thinks of countries that could go 100 percent renewable, the immediate thoughts go to islands with solar and storage, hydro and geothermal rich countries such as Iceland, or even wind and wave-rich countries like Scotland.

One of the last economies imagined going fully renewable would be India, the rising economic giant that is still yet to connect several hundred million people to its mostly coal-fired grid, and is expected to have the highest growth of electricity consumption. But according to environmental group WWF, India could reach a goal of 100 percent renewables by 2050.

The study examines the possibility of a near 100% Renewable Energy Scenario (REN) for India by the middle of the century against a reference scenario (REF) in which the economy is likely to be dependent primarily on fossil fuels – coal, oil and gas.

WWF says that to get there India must make some large-scale changes to get on the right track as soon as possible. According to the report, aggressive energy efficiency improvements alone can bring in savings of up to 59 percent (by both the supply and demand sides) by mid-century.

Biofuels are set to play a large role, especially in the transport sector accounting for nearly 90 percent of the industry’s requirements.  According to WWF the third-generation biofuels in question are currently still in R&D phase and for the plan to go accordingly they must become commercially viable within the next two decades.

Overall, biofuels account for 23 percent of the total commercial energy supply,  most of the transportation needs. Solar thermal accounts for much of industry’s heating needs, and the electricity supply increases nearly 8 fold, with wind contributing the largest component.

Electricity generation by resource - Renewable Energy Scenario (REN) for India
Electricity generation by resource – Renewable Energy Scenario (REN) for India

The report says the reference scenario depicts an unsustainable, polluting and relatively inefficient energy future in 2051. The renewable scenario, on the other hand, presents a modern, cleaner and highly efficient India and shows that it is, in principle, theoretically feasible to achieve close to 90 percent penetration of renewable energy sources in the energy mix by 2051.

“However, there are still many unresolved questions in the REN scenario related to resource potentials, availability, commercial viability of alternative options, policy and finance mobilization, barriers of cultural and technological lock-ins, etc,” it says.

“Several feasibility studies are, therefore, needed to lay the basis for moving toward the REN scenario; these have not yet been carried out. There are many interventions that would be necessary to remove various barriers and to achieve higher levels of renewable energy deployment in India.”

Concentrated solar thermal technologies, many of which are currently still in the research and development phase, will take on a large chunk of the nations electricity needs as well as meeting thermal demand in industries that require temperatures below 700°C.

Wind is also set to push India towards its 100 percent goal. Currently India has no estimates of its offshore wind potential but the WWF predicts that it could have up to 170 GW installed by 2051.

Rural households will be forced to change their cooking habits, meeting their needs through improved cook stoves while urban households switch to electrical based cooking.

In 2010, fossil fuels accounted for 74 percent of India’s total energy consumed as well as being the world’s third largest emitter of carbon dioxide. India’s greenhouse gas emissions have also steadily risen by 2.9 percent each year between 1994 and 2007.

Much of the rural population still relies on biomass (such as firewood and agro-residue) for much of its basic cooking needs (around 24.6 percent of the primary energy supply) as well as using kerosene for lighting purposes.

Coal currently accounts for 42.4 percent of India’s total primary energy demand in 2010, with the national rail network being the largest coal consumer before 1975 – now overtaken by the power sector (87.7 per cent of total consumption).

Electricity alone plays a crucial role in improving levels of human development and the quality of modern life – with a strong positive link between human development, economic growth and growth in energy and infrastructure.

To sustain India’s own growth it requires large amounts of energy, with little oil reserves and much of its large coal reserves being inaccessible due to technological, social or geological factors, the country has many push factors to get its renewable base up and running. Due to the low oil reserves India has a high import dependence making it more economically vulnerable and well as supply issues.

India started its National Solar Mission in 2010 and is aiming to get 20 GW of grid connected solar power by 2020. As well as this, the Mission is promoting 2,000 MW of off-grid applications; including 20 million solar lighting systems and 20 million square metres of solar thermal collector area by 2022.

In general, India has a vast potential for solar power generation, with about 58 percent of the country’s total land area receiving an annual global insolation about 5 kWh/m2/day. These areas with 5 kWh/m2/day or above can generate at least 77 W/m2 at 16 per cent efficiency.

Rooftop PV is likely to play a major role in both rural and urban areas with residential, agricultural and industrial priorities reducing the amount of available land for solar programs.

It was estimated that almost 30 percent of industrial processes in India require heat below 250°C which can be supplied with heat from solar thermal concentrators. Temperatures below 80°C can be met through solar air heaters and solar water heaters. Industries – with the exception of iron, steel, cement and fertilizer – could in theory shift to CSP based heating.

Wind energy in India currently ranks second to hydro in renewable energy’s generating electricity. With 17,700 MW of installed capacity India’s rank in harnessing wind energy is fifth in the world after USA, China, Germany and Spain. Over the period of 1992-2010 the wind energy installed capacity in India witnesses an annual growth rate of 37 percent.

According to the Centre for Wind Energy Technology, most of India’s wind energy is concentrated in five states – Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra and Gujarat.

The WWF estimates that India’s total wind potential in megawatts stands at 49,130 at 50 metres, when taken up to 80 metres the reading more than doubles at 102,788 MW.

Hydropower is also being considered, with estimates around 148GW of energy potential. Two rivers, Brahmaputra and Indus, have the highest potential, with only 11 and 50 per cent respectively being utilized thus far.

India’s first tidal power project, with a 3.75 MW capacity, is being set up as well as the Kapasar project which involves building a 30 km-long dam. A recent study cited in the report suggested that also tidal power generation is feasible in certain areas it may not be commercially viable due to diesel costs. Currently, The Government plans to build 7 MW of grid-connected ocean tidal power plans in its 12thfive-year plan.

India’s geothermal potential is around 10,600 MW, distributed across various states and in 2009 the country’s geothermal power capacity stood at 10.7 GW. Although geothermal power development is restricted to tectonically active regions, and seeing as India lacks volcanic activity on its mainland, it also faces issues such as costs of drilling and transmission of energy.

Comparing the REF’s and REN’s final energy demands in 2050 highlights not only a stark mix of energy uses but also efficiency levels. In 2051 the REF is approximated to have increased the countries’ energy demand up to 2,545 Mtoe when compared to the REN sitting at 1,461 Mtoe – highlighting an overall energy savings of 43 percent.

Modeling done by the WWF has estimated that the total undiscounted technology investment cost for the renewables scenario is 42 per cent more than the reference (fossil-fuel) scenario, requiring 544 trillion Indian Rupees from 2011 to 2051. Although the figure sounds quite high it is only around 10 percent higher than if India was to stick to its reference scenario.

In the renewables scenario, India will have almost a quarter more electrical generation capacity (in GW) than if it continues along the reference scenario path. Furthermore, in 2051 the renewables scenario will yield less than one billion tonnes of carbon emissions, compared to the reference scenario with almost 12 billion tonnes.

WWF highlights that although the renewables scenario is preferred it will not be easy for government to get there, recommending various policy options available including; tax holidays for renewable energy uptake, creating incentives for new projects, enhancing R&D, increasing the budgetary allocation, pricing energy and technology for efficiency and strengthening policy and regulatory set-ups.

Repost.Us - Republish This Article

This article, India Could Reach 100% Renewables By Mid-Century, is syndicated from Clean Technica and is posted here with permission.

TEPCO President: Fukushima Was “A Warning To The World”

Originally published on Planetsave by Sandy Dechert

TEPCO workers are using a 91-ton cask to transport nuclear fuel from the damaged secondary containment pool at Reactor Unit 4. (Photo: TEPCO.)
TEPCO workers lower the 91-ton shielded transfer cask in preparation for relocating unused nuclear fuel. Photo courtesy of TEPCO

Today, officials at Tokyo Electric Power Company could breathe a sigh of relief.

Using remote-controlled cranes, workers at Fukushima Daiichi cleared some of the dangerously radioactive uranium fuel rod racks from the upper-story cooling pond of damaged Reactor Unit 4.

You can see TEPCO’s video of parts of the operation here.

Technicians loaded unused fuel assemblies underwater from the unit’s secondary containment into a specially designed steel-walled canister (see photo), which looks like a huge home hot water heater and must be decontaminated every time it is transferred from radioactive water to air. At 1:2

0 this afternoon (Tokyo time), the operators began the process of moving the cask onto the truck that would carry it to a safer storage location at ground level nearby. TEPCO has reported that the transfer has gone smoothly so far. After the fresh fuel rods are removed, the company will tackle the problem of moving the reactor’s spent fuel, which is hotter and more dangerous than fresh fuel.

“TEPCO has worked out individual scenarios to deal with stoppages of pool cooling, water leaks from the pools, a massive earthquake, a fire, and an accident involving the trailer, but not for dealing with a situation in which two or more incidents occur simultaneously. Therefore it must proceed in an extremely careful[ly] manner,” the Japan Times reported earlier today.

TEPCO president acknowledges miscalculations

The president of the utility, Naomi Hirose, told The Guardian this week that:

“What happened at Fukushima was, yes, a warning to the world.” Hirose stated that “We made a lot of excuses to ourselves” and unwarranted assumptions that others had discussed adequate “counter-measures” for large tsunamis.

“We tried to persuade people that nuclear power is 100% safe….But we have to explain, no matter how small a possibility, what if this [safety] barrier is broken? We have to prepare a plan if something happens.… It is easy to say this is almost perfect so we don’t have to worry about it. But we have to keep thinking: what if.…”

International oversight visit

Adequacy of international consultation has been an issue since the incident occurred. Concerns have increased since the revelation of TEPCO’s apparent bravado and inattention early in the process. Although TEPCO has performed nuclear fuel transfers before without incident, this is the first time the company has had to deal with a reactor damaged by earthquake, flooding, and explosions.

Apprehension will be mitigated somewhat when 19 experts from the International Atomic Energy Agency visit the site from November 25 to December 4 to assess the success of this week’s mission and the current state of TEPCO’s efforts to prevent contaminated water from leaking out of multiple storage tanks. The Japanese government requested the visit. Hahn Pil-soo, the IAEA’s director of radiation, transport, and waste safety, will be on the team.

IAEA, the world’s clearinghouse and watchdog for nuclear operations, formed in 1957 as energy firms began installing nuclear plants across the world on a wide scale. Vienna is the agency’s headquarters. IAEA’s goal is to promote safe, secure and peaceful nuclear technologies.

Next step in decommissioning

Japan News describes the second phase of the reactor decommissioning process, which will begin when the Unit 4 work has finished, possibly as early as 2015. The company then needs to tackle the problem of recovering spent fuel from Reactor Units 1-3.

These reactors were online at the time of the magnitude 9 Great East Japan subsea earthquake, tsunami, and explosions that killed more than 18,000 people in March 2011. They present unique challenges because at least some of their fuel melted down, the molten fuel’s location below the reactors is presently unknown, and its chemical composition is likely more toxic because it contains more plutonium and unstable isotopes. The tricky core meltdown work will probably start around 2020.

In a word of caution to the developers of eight proposed British nuclear generating stations and of similar facilities across the globe, TEPCO president Hirose offered the following advice:

“Try to examine all the possibilities, no matter how small they are, and don’t think any single counter-measure is foolproof. Think about all different kinds of small counter-measures, not just one big solution. There’s not one single answer.”

Hirose now feels that Japan will achieve its best electric power results through energy diversification, using oil, gas, and renewables as well as nuclear generation. Before the disaster at Fukushima, Japan had planned to expand nuclear power to supply half the nation’s energy needs.

TEPCO’s official position, stated on its website, is that “Nuclear power generation has excellent long-term prospects for the stable procurement of nuclear fuel and for effectively countering global warming problems.”

Forty percent of the company’s revenues have historically come from nuclear power generation

Presently, all 50 of Japan’s nuclear plants (17 of which are owned by TEPCO) have been shut down. Fukushima Daiichi Units 1-4 are unusable, and the company has just bowed to a government request that the other two reactors (5 and 6) on the site be mothballed.

Many in Japan, from ordinary people to three high former government officials, believe Japan should abandon nuclear power completely.

Uncertainty about nuclear renewal and the high cost of using carbon-based technology to fill in for the power previously generated by nuclear plants (one third of Japan’s electricity) forced the country this week to renege on an earlier promise and greatly lower its climate change goals.

This article, TEPCO President: Fukushima Was “A Warning To The World”, is syndicated from Clean Technica and is posted here with permission.

Solar Deployment Is Faster Than Nuclear

by Guest Contributor Karl-Friedrich Lenz PhD.

Vermont Yankee Nuclear Power Station.
Vermont Yankee Nuclear Power Station. Image License: Public Domain

Originally published on the Lenz Blog.

Climate scientist Jim Hansen has written another open letter in support of nuclear energy as a solution to global warming. Thanks to this tweet by Barry Brook for the link.

If you want nuclear as part of the solution, you necessarily need to explain why renewable energy won’t be able to do the job alone. This particular open letter says:

“Renewables like wind and solar and biomass will certainly play roles in a future energy economy, but those energy sources cannot scale up fast enough to deliver cheap and reliable power at the scale the global economy requires.”

We’ll have to wait a couple of decades to see if solar and wind are able to provide for 100 percent of energy. Contrary to what Jim Hansen (not an expert on energy systems) thinks, I expect that this will happen. But we already know one thing for sure.

Solar and wind have scaled up enough already to make nuclear lose in the market place. Even with nuclear enjoying the benefit of insufficient levels of insurance (leaving the remaining risk for the taxpayer), it just doesn’t make economic sense any more to build new nuclear plants.

And if you decide to build a new nuclear plant today, it won’t be able to deliver energy until ten years later, and will then have to compete for a couple of decades against wind and solar at the much more reduced prices these technologies will have then.

In contrast, you can build a large solar project in a couple of weeks or months. I am not sure why that is “not fast enough”, but it is sure faster than nuclear by a factor of over ten.

Repost.Us - Republish This Article

This article, Solar Deployment Is Faster Than Nuclear, is syndicated from Clean Technica and is posted here with permission.

About the Author

Guest Contributor is many, many people all at once. In other words, we publish a number of guest posts from experts in a large variety of fields. This is our contributor account for those special people. 😀

Related Posts

It's so unfair.  Solar doesn't have to shield their giant reactor but we do.

Solar Power Cheaper Than Nuclear In Cloudy Old England

Royal Dutch Shell Drops Two ‘Bombs’ in One Week

Royal Dutch Shell Drops Two ‘Bombs’ in One Week | 01/03/13
by John Brian Shannon John Brian Shannon

First came the announcement this week by Shell senior executives that oil extraction in the Arctic would be postponed for the second year in a row, and second is yesterday’s announcement foreshadowing the company’s plan for the future, Shell Sees Solar As The Biggest Energy Source After Exiting It in 2009.

The New Lens Scenarios Europe Shell report depicts two different energy policy scenarios, predicts that “photovoltaic panels will be the main power source by 2060 or 2070”  (depending on which scenario) and “lower costs and state support will boost solar to about 600 gigawatts in 2035” – worldwide totals.

What might lie ahead 50 years from now… or even in 2100? We consider two possible scenarios of the future, taking a number of pressing global trends and issues and using them as “lenses” through which to view the world.

The scenarios provide a detailed analysis of current trends and their likely trajectory into the future. They dive into the implications for the pace of global economic development, the types of energy we use to power our lives and the growth in greenhouse gas emissions.

The scenarios also highlight areas of public policy likely to have the greatest influence on the development of cleaner fuels, improvements in energy efficiency and on moderating greenhouse gas emissions.

Mountains

The first scenario, labelled “mountains”, sees a strong role for government and the introduction of firm and far-reaching policy measures. These help to develop more compact cities and transform the global transport network. New policies unlock plentiful natural gas resources – making it the largest global energy source by the 2030s – and accelerate carbon capture and storage technology, supporting a cleaner energy system.

Oceans

The second scenario, which we call “oceans”, describes a more prosperous and volatile world. Energy demand surges, due to strong economic growth. Power is more widely distributed and governments take longer to agree major decisions. Market forces rather than policies shape the energy system: oil and coal remain part of the energy mix but renewable energy also grows. By the 2060s solar becomes the world’s largest energy source. – Shell

According to information compiled from Bloomberg New Energy Finance and the International Energy Agency, solar photovoltaic (PV) capacity has grown to about 102 gigawatts worldwide in 2012 – which is up from 1 gigawatt globally in 2000.

Since year 2000, an average of 10 gigawatts of PV solar, per year, has been very unevenly added to the world’s electrical grids, but if PV solar installations were to grow at the same rate as the 2000-2012 timeframe, just 450 gigawatts of PV solar would be installed by 2035 — not the 600 gigawatts predicted by the report. The growth rate for PV solar has been astonishing for a new kind of energy for utility companies — and additionally so, considering it is battling with the big boys of the energy world, oil & gas, coal and nuclear. Regardless of past challenges, strong growth in PV solar is forecast until 2100.

All of this means that PV solar is set to grow dramatically between now and 2035, let alone by 2070.

Peter Endig/dpa via AP Images
Shell Solar GmbH 2004 | World’s then-largest solar power plant in Espenhain, Germany | Image credit courtesy: Peter Endig/dpa via AP Images

The report has PV solar power moving to number one position to provide at least 38% of worldwide energy supply (well up from today’s ranking of 13th place) to become the predominant kind of energy by 2100.

By 2100, energy from oil will account for only 10% of worldwide energy use and natural gas will account for just 7.5% of the worldwide total, Shell said.

Due to enhanced Carbon Capture and Storage, clean combustion technology and the use of CO2 gas for industrial processes by 2100, Shell sees “global emissions of carbon dioxide dropping to near zero by 2100”.

As all of the above plays out, natural gas demand is expected to surpass the historic demands seen for any other kind of fuel and the quote from the report’s main authour Jeremy Bentham, speaks volumes about the anticipated level of demand for the gas.

“The underlying pent-up demand for gas is very strong…we see it being sucked up, every molecule.”– Jeremy Bentham

The overall demand for energy will double in the next 50 years due to population growth and increases in living standards, and natural gas will eventually enjoy the highest level of fuel demand in history. But by 2100, the world will mainly run on PV solar, while other kinds of energy will contribute small percentages to the overall global energy mix.

It now appears that Shell would rather ‘switch than fight’ the move to PV solar. It is likely to be the first of many such switches in the global energy industry.

Related articles