Royal Dutch Shell Drops Two ‘Bombs’ in One Week

Royal Dutch Shell Drops Two ‘Bombs’ in One Week | 01/03/13
by John Brian Shannon John Brian Shannon

First came the announcement this week by Shell senior executives that oil extraction in the Arctic would be postponed for the second year in a row, and second is yesterday’s announcement foreshadowing the company’s plan for the future, Shell Sees Solar As The Biggest Energy Source After Exiting It in 2009.

The New Lens Scenarios Europe Shell report depicts two different energy policy scenarios, predicts that “photovoltaic panels will be the main power source by 2060 or 2070”  (depending on which scenario) and “lower costs and state support will boost solar to about 600 gigawatts in 2035” – worldwide totals.

What might lie ahead 50 years from now… or even in 2100? We consider two possible scenarios of the future, taking a number of pressing global trends and issues and using them as “lenses” through which to view the world.

The scenarios provide a detailed analysis of current trends and their likely trajectory into the future. They dive into the implications for the pace of global economic development, the types of energy we use to power our lives and the growth in greenhouse gas emissions.

The scenarios also highlight areas of public policy likely to have the greatest influence on the development of cleaner fuels, improvements in energy efficiency and on moderating greenhouse gas emissions.

Mountains

The first scenario, labelled “mountains”, sees a strong role for government and the introduction of firm and far-reaching policy measures. These help to develop more compact cities and transform the global transport network. New policies unlock plentiful natural gas resources – making it the largest global energy source by the 2030s – and accelerate carbon capture and storage technology, supporting a cleaner energy system.

Oceans

The second scenario, which we call “oceans”, describes a more prosperous and volatile world. Energy demand surges, due to strong economic growth. Power is more widely distributed and governments take longer to agree major decisions. Market forces rather than policies shape the energy system: oil and coal remain part of the energy mix but renewable energy also grows. By the 2060s solar becomes the world’s largest energy source. – Shell

According to information compiled from Bloomberg New Energy Finance and the International Energy Agency, solar photovoltaic (PV) capacity has grown to about 102 gigawatts worldwide in 2012 – which is up from 1 gigawatt globally in 2000.

Since year 2000, an average of 10 gigawatts of PV solar, per year, has been very unevenly added to the world’s electrical grids, but if PV solar installations were to grow at the same rate as the 2000-2012 timeframe, just 450 gigawatts of PV solar would be installed by 2035 — not the 600 gigawatts predicted by the report. The growth rate for PV solar has been astonishing for a new kind of energy for utility companies — and additionally so, considering it is battling with the big boys of the energy world, oil & gas, coal and nuclear. Regardless of past challenges, strong growth in PV solar is forecast until 2100.

All of this means that PV solar is set to grow dramatically between now and 2035, let alone by 2070.

Peter Endig/dpa via AP Images
Shell Solar GmbH 2004 | World’s then-largest solar power plant in Espenhain, Germany | Image credit courtesy: Peter Endig/dpa via AP Images

The report has PV solar power moving to number one position to provide at least 38% of worldwide energy supply (well up from today’s ranking of 13th place) to become the predominant kind of energy by 2100.

By 2100, energy from oil will account for only 10% of worldwide energy use and natural gas will account for just 7.5% of the worldwide total, Shell said.

Due to enhanced Carbon Capture and Storage, clean combustion technology and the use of CO2 gas for industrial processes by 2100, Shell sees “global emissions of carbon dioxide dropping to near zero by 2100”.

As all of the above plays out, natural gas demand is expected to surpass the historic demands seen for any other kind of fuel and the quote from the report’s main authour Jeremy Bentham, speaks volumes about the anticipated level of demand for the gas.

“The underlying pent-up demand for gas is very strong…we see it being sucked up, every molecule.”– Jeremy Bentham

The overall demand for energy will double in the next 50 years due to population growth and increases in living standards, and natural gas will eventually enjoy the highest level of fuel demand in history. But by 2100, the world will mainly run on PV solar, while other kinds of energy will contribute small percentages to the overall global energy mix.

It now appears that Shell would rather ‘switch than fight’ the move to PV solar. It is likely to be the first of many such switches in the global energy industry.

Related articles

Wind Power: Healthy and Growing!

Wind Power: Healthy and Growing! | 04/02/13
by John Brian Shannon John Brian Shannon

Global wind power growing at an exponential rate

For example, China has now installed more wind turbines than any other country. China began 2011 with 41.5 gigawatts of installed wind power capacity and is adding more wind turbines to their grid almost daily.

And by 2015 (one year ahead of schedule) China’s citizens will enjoy 100 gigawatts of clean, wind powered electricity. Wind power surpassed nuclear energy in 2012, to become China’s 3rd largest source of electrical power.

By 2020, they plan to have 200 gigawatts of wind power, which will displace many billions of tons of airborne emissions from coal-fired power plants.

Screen-shot-2012-11-29-at-8.28.09-PM

The United States is second with 47 gigawatts of wind power capacity (at the end of 2011) and must add 305 gigawatts of wind power by 2030 to reach the goals set out in the U.S. Department of Energy 2008 report 20% Wind Energy by 2030 (downloadable PDF) which predicted that wind power could meet 20% of all U.S. electricity demand by 2020.

The use of wind power in the United States has expanded quickly over the last several years. Construction of new wind power generation capacity in the fourth quarter of 2012 totaled 8,380 megawatts (MW) bringing the cumulative installed capacity to 60,007 MW.[1]

This capacity is exceeded only by China.[2] For the 12 months from November 2011 to October 2012, the electricity produced from wind power in the United States amounted to 137 terawatt-hours, or 3.4% of all generated electrical energy.[3]

The United States produced enough electricity from wind in the 12 months [prior to] November 2012 to power over 11 million US households annually[4] or meet the total energy demands of Poland.

The U.S. wind industry generates tens of thousands of jobs and billions of dollars of economic activity.[9]

Wind projects boost local tax bases, and revitalize the economy of rural communities by providing a steady income-stream to farmers with wind turbines on their land. – Wikipedia

Wind_Power_Generation_and_Percentage

Wind energy has grown exponentially in the last decade, with an average increase of 29.7%/year. At an exponential growth of 29.7%, the U.S. would obtain 20% from wind by 2020. — Image courtesy of Wikipedia

If you think that only large countries can use the wind to create clean and fuel-free electrical energy, read: Denmark Sets Goal of 100% Renewable Energy by 2050. Denmark has proven to the world that when citizens back government efforts towards sustainable energy — the transition to 100% green energy is possible. The Danes are making it look easy.

It is time to harness that wind and produce clean electricity from it, create jobs and make profit by it, while enjoying the benefits of clean air as more wind farms displace fossil-fuel power plants!

The following information is courtesy of Wikipedia, click to read here:

Complementary power

Solar power tends to be complementary to wind. On daily to weekly timescales, high pressure areas tend to bring clear skies and low surface winds, whereas low pressure areas tend to be windier and cloudier. On seasonal timescales, solar energy peaks in summer, whereas in many areas wind energy is lower in summer and higher in winter.[nb 3][95]

Thus the intermittencies of wind and solar power tend to cancel each other somewhat.

In 2007 the Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power around the clock and throughout the year, entirely from renewable sources.[96] 

Pumped-storage hydroelectricity or other forms of grid energy storage can store energy developed by high-wind periods and release it when needed.[103]

Cost trends

Wind power has low ongoing costs, but a moderate capital cost. The marginal cost of wind energy once a plant is constructed is usually less than 1-cent per kW·h.[113] This cost has reduced as wind turbine technology improved.

The National Renewable Energy Laboratory projects that the levelized cost of wind power in the U.S. will decline about 25% from 2012 to 2030.[112]